
Chipyard Documentation
Release 0.1

Berkeley Architecture Research

Jan 26, 2020





Contents

1 Quick Start 3
1.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Setting up the Chipyard Repo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Installing the RISC-V Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 What’s Next? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Getting Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6.1 Chipyard Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6.3 Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6.4 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.6.5 VLSI Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.6.6 Customization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.6.7 Target Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
1.6.8 Advanced Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
1.6.9 TileLink and Diplomacy Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2 Indices and tables 95

i



ii



Chipyard Documentation, Release 0.1

Chipyard is a a framework for designing and evaluating full-system hardware using agile teams. It is composed of a
collection of tools and libraries designed to provide an intergration between open-source and commercial tools for the
development of systems-on-chip. New to Chipyard? Jump to the Chipyard Basics page for more info.
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CHAPTER 1

Quick Start

1.1 Requirements

Chipyard is developed and tested on Linux-based systems.

Warning: It is possible to use this on macOS or other BSD-based systems, although GNU tools will need to be
installed; it is also recommended to install the RISC-V toolchain from brew.

Warning: Working under Windows is not recommended.

1.2 Setting up the Chipyard Repo

Start by fetching Chipyard’s sources. Run:

git clone https://github.com/ucb-bar/chipyard.git
cd chipyard
./scripts/init-submodules-no-riscv-tools.sh

This will initialize and checkout all of the necessary git submodules.

1.3 Installing the RISC-V Tools

We need to install the RISC-V toolchain in order to be able to run RISC-V programs using the Chipyard infrastructure.
This will take about 20-30 minutes. You can expedite the process by setting a make environment variable to use
parallel cores: export MAKEFLAGS=-j8. To build the toolchains, you should run:

3
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./scripts/build-toolchains.sh

Note: If you are planning to use the Hwacha vector unit, or other RoCC-based accelerators, you should build the
esp-tools toolchain by adding the esp-tools argument to the script above. If you are running on an Amazon Web
Services EC2 instance, intending to use FireSim, you can also use the --ec2fast flag for an expedited installation
of a pre-compiled toolchain.

Finally, set up Chipyard’s environment variables and put the newly built toolchain on your path:

source ./env.sh

1.4 What’s Next?

This depends on what you are planning to do with Chipyard.

• If you intend to run a simulation of one of the vanilla Chipyard examples, go to Software RTL Simulation and
follow the instructions.

• If you intend to run a simulation of a custom Chipyard SoC Configuration, go to Simulating A Custom Project
and follow the instructions.

• If you intend to run a full-system FireSim simulation, go to FPGA-Accelerated Simulation and follow the in-
structions.

• If you intend to add a new accelerator, go to Customization and follow the instructions.

• If you want to learn about the structure of Chipyard, go to Chipyard Components.

• If you intend to change the generators (BOOM, Rocket, etc) themselves, see Generators.

• If you intend to run a tutorial VLSI flow using one of the Chipyard examples, go to ASAP7 Tutorial and follow
the instructions.

• If you intend to build a chip using one of the vanilla Chipyard examples, go to Building A Chip and follow the
instructions.

1.5 Getting Help

If you have a question about Chipyard that isn’t answered by the existing documentation, feel free to ask for help on
the Chipyard Google Group.

1.6 Table of Contents

1.6.1 Chipyard Basics

These sections will walk you through the basics of the Chipyard framework:

• First, we will go over the components of the framework.

• Next, we will go over how to understand how Chipyard configures its designs.

• Then, we will go over initial framework setup.

4 Chapter 1. Quick Start
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Hit next to get started!

Chipyard Components

Generators

The Chipyard Framework currently consists of the following RTL generators:

Processor Cores

Rocket Core An in-order RISC-V core. See Rocket Core for more information.

BOOM (Berkeley Out-of-Order Machine) An out-of-order RISC-V core. See Berkeley Out-of-Order Machine
(BOOM) for more information.

Accelerators

Hwacha A decoupled vector architecture co-processor. Hwacha currently implements a non-standard RISC-V exten-
sion, using a vector architecture programming model. Hwacha integrates with a Rocket or BOOM core using
the RoCC (Rocket Custom Co-processor) interface. See Hwacha for more information.

SHA3 A fixed-function accelerator for the SHA3 hash function. This simple accelerator is used as a demonstration
for some of the Chipyard integration flows using the RoCC interface.

System Components:

icenet A Network Interface Controller (NIC) designed to achieve up to 200 Gbps.

sifive-blocks System components implemented by SiFive and used by SiFive projects, designed to be integrated with
the Rocket Chip generator. These system and peripheral components include UART, SPI, JTAG, I2C, PWM,
and other peripheral and interface devices.

AWL (Analog Widget Library) Digital components required for integration with high speed serial links.

testchipip A collection of utilities used for testing chips and interfacing them with larger test environments.

Tools

Chisel A hardware description library embedded in Scala. Chisel is used to write RTL generators using meta-
programming, by embedding hardware generation primitives in the Scala programming language. The Chisel
compiler elaborates the generator into a FIRRTL output. See Chisel for more information.

FIRRTL An intermediate representation library for RTL description of digital designs. FIRRTL is used as a formal-
ized digital circuit representation between Chisel and Verilog. FIRRTL enables digital circuits manipulation
between Chisel elaboration and Verilog generation. See FIRRTL for more information.

Barstools A collection of common FIRRTL transformations used to manipulate a digital circuit without changing the
generator source RTL. See Barstools for more information.

Dsptools A Chisel library for writing custom signal processing hardware, as well as integrating custom signal pro-
cessing hardware into an SoC (especially a Rocket-based SoC).

1.6. Table of Contents 5
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Toolchains

riscv-tools A collection of software toolchains used to develop and execute software on the RISC-V ISA. The include
compiler and assembler toolchains, functional ISA simulator (spike), the Berkeley Boot Loader (BBL) and proxy
kernel. The riscv-tools repository was previously required to run any RISC-V software, however, many of the
riscv-tools components have since been upstreamed to their respective open-source projects (Linux, GNU, etc.).
Nevertheless, for consistent versioning, as well as software design flexibility for custom hardware, we include
the riscv-tools repository and installation in the Chipyard framework.

esp-tools A fork of riscv-tools, designed to work with the Hwacha non-standard RISC-V extension. This fork can
also be used as an example demonstrating how to add additional RoCC accelerators to the ISA-level simulation
(Spike) and the higher-level software toolchain (GNU binutils, riscv-opcodes, etc.)

Software

FireMarshal FireMarshal is the default workload generation tool that Chipyard uses to create software to run on its
platforms. See fire-marshal for more information.

Sims

verilator (Verilator wrapper) Verilator is an open source Verilog simulator. The verilator directory provides
wrappers which construct Verilator-based simulators from relevant generated RTL, allowing for execution of
test RISC-V programs on the simulator (including vcd waveform files). See Verilator (Open-Source) for more
information.

vcs (VCS wrapper) VCS is a proprietary Verilog simulator. Assuming the user has valid VCS licenses and instal-
lations, the vcs directory provides wrappers which construct VCS-based simulators from relevant generated
RTL, allowing for execution of test RISC-V programs on the simulator (including vcd/vpd waveform files). See
Synopsys VCS (License Required) for more information.

FireSim FireSim is an open-source FPGA-accelerated simulation platform, using Amazon Web Services (AWS) EC2
F1 instances on the public cloud. FireSim automatically transforms and instruments open-hardware designs into
fast (10s-100s MHz), deterministic, FPGA-based simulators that enable productive pre-silicon verification and
performance validation. To model I/O, FireSim includes synthesizeable and timing-accurate models for standard
interfaces like DRAM, Ethernet, UART, and others. The use of the elastic public cloud enable FireSim to scale
simulations up to thousands of nodes. In order to use FireSim, the repository must be cloned and executed on
AWS instances. See FireSim for more information.

VLSI

Hammer Hammer is a VLSI flow designed to provide a layer of abstraction between general physical design concepts
to vendor-specific EDA tool commands. The HAMMER flow provide automated scripts which generate relevant
tool commands based on a higher level description of physical design constraints. The Hammer flow also allows
for re-use of process technology knowledge by enabling the construction of process-technology-specific plug-
ins, which describe particular constraints relating to that process technology (obsolete standard cells, metal layer
routing constraints, etc.). The Hammer flow requires access to proprietary EDA tools and process technology
libraries. See Core Hammer for more information.

Development Ecosystem

6 Chapter 1. Quick Start
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Chipyard Approach

The trend towards agile hardware design and evaluation provides an ecosystem of debugging and implementation
tools, that make it easier for computer architecture researchers to develop novel concepts. Chipyard hopes to build
on this prior work in order to create a singular location to which multiple projects within the Berkeley Architecture
Research can coexist and be used together. Chipyard aims to be the “one-stop shop” for creating and testing your own
unique System on a Chip (SoC).

Chisel/FIRRTL

One of the tools to help create new RTL designs quickly is the Chisel Hardware Construction Language and the
FIRRTL Compiler. Chisel is an embedded language within Scala that provides a set of libraries to help hardware
designers create highly parameterizable RTL. FIRRTL on the other hand is a compiler for hardware which allows the
user to run FIRRTL passes that can do dead code elimination, circuit analysis, connectivity checks, and much more!
These two tools in combination allow quick design space exploration and development of new RTL.

Generators

Within this repository, all of the Chisel RTL is written as generators. Generators are parametrized programs designed
to generate RTL code based on configuration specifications. Generators can be used to generate Systems-on-Chip
(SoCs) using a collection of system components organized in unique generator projects. Generators allow you to
create a family of SoC designs instead of a single instance of a design!

Configs, Parameters, Mix-ins, and Everything In Between

A significant portion of generators in the Chipyard framework use the Rocket Chip parameter system. This parameter
system enables for the flexible configuration of the SoC without invasive RTL changes. In order to use the parameter
system correctly, we will use several terms and conventions:

Parameters

It is important to note that a significant challenge with the Rocket parameter system is being able to identify the
correct parameter to use, and the impact that parameter has on the overall system. We are still investigating methods
to facilitate parameter exploration and discovery.

Configs

A Config is a collection of multiple generator parameters being set to specific values. Configs are additive, can
override each other, and can be composed of other Configs. The naming convention for an additive Config is
With<YourConfigName>, while the naming convention for a non-additive Config will be <YourConfig>. Con-
figs can take arguments which will in-turn set parameters in the design or reference other parameters in the design (see
Parameters).

This example shows a basic additive Config class that takes in zero arguments and instead uses hardcoded values to
set the RTL design parameters. In this example, MyAcceleratorConfig is a Scala case class that defines a set of
variables that the generator can use when referencing the MyAcceleratorKey in the design.

1.6. Table of Contents 7
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class WithMyAcceleratorParams extends Config((site, here, up) => {
case BusWidthBits => 128
case MyAcceleratorKey =>
MyAcceleratorConfig(

rows = 2,
rowBits = 64,
columns = 16,
hartId = 1,
someLength = 256)

})

This next example shows a “higher-level” additive Config that uses prior parameters that were set to derive other
parameters.

class WithMyMoreComplexAcceleratorConfig extends Config((site, here, up) => {
case BusWidthBits => 128
case MyAcceleratorKey =>
MyAcceleratorConfig(

Rows = 2,
rowBits = site(SystemBusKey).beatBits,
hartId = up(RocketTilesKey, site).length)

})

The following example shows a non-additive Config that combines the prior two additive Configs using ++. The
additive Configs are applied from the right to left in the list (or bottom to top in the example). Thus, the order of the
parameters being set will first start with the DefaultExampleConfig, then WithMyAcceleratorParams,
then WithMyMoreComplexAcceleratorConfig.

class SomeAdditiveConfig extends Config(
new WithMyMoreComplexAcceleratorConfig ++
new WithMyAcceleratorParams ++
new DefaultExampleConfig

)

The site, here, and up objects in WithMyMoreComplexAcceleratorConfig are maps from configuration
keys to their definitions. The site map gives you the definitions as seen from the root of the configuration hierarchy
(in this example, SomeAdditiveConfig). The here map gives the definitions as seen at the current level of the
hierarchy (i.e. in WithMyMoreComplexAcceleratorConfig itself). The up map gives the definitions as seen
from the next level up from the current (i.e. from WithMyAcceleratorParams).

Cake Pattern

A cake pattern is a Scala programming pattern, which enable “mixing” of multiple traits or interface definitions
(sometimes referred to as dependency injection). It is used in the Rocket Chip SoC library and Chipyard framework
in merging multiple system components and IO interfaces into a large system component.

This example shows a Rocket Chip based SoC that merges multiple system components (BootROM, UART, etc) into
a single top-level design.

class MySoC(implicit p: Parameters) extends RocketSubsystem
with CanHaveMasterAXI4MemPort
with HasPeripheryBootROM
with HasNoDebug
with HasPeripherySerial
with HasPeripheryUART

(continues on next page)
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(continued from previous page)

with HasPeripheryIceNIC
{

lazy val module = new MySoCModuleImp(this)
}

class MySoCModuleImp(outer: MySoC) extends RocketSubsystemModuleImp(outer)
with CanHaveMasterAXI4MemPortModuleImp
with HasPeripheryBootROMModuleImp
with HasNoDebugModuleImp
with HasPeripherySerialModuleImp
with HasPeripheryUARTModuleImp
with HasPeripheryIceNICModuleImp

There are two “cakes” here. One for the lazy module (ex. HasPeripherySerial) and one for the lazy module
implementation (ex. HasPeripherySerialModuleImp where Imp refers to implementation). The lazy module
defines all the logical connections between generators and exchanges configuration information among them, while
the lazy module implementation performs the actual Chisel RTL elaboration.

In the MySoC example class, the “outer” MySoC instantiates the “inner” MySoCModuleImp as a lazy module im-
plementation. This delays immediate elaboration of the module until all logical connections are determined and all
configuration information is exchanged. The RocketSubsystem outer base class, as well as the HasPeripheryX
outer traits contain code to perform high-level logical connections. For example, the HasPeripherySerial outer
trait contains code to lazily instantiate the SerialAdapter, and connect the SerialAdapter’s TileLink node to
the Front bus.

The ModuleImp classes and traits perform elaboration of real RTL. For example, the
HasPeripherySerialModuleImp trait physically connects the SerialAdapter module, and instanti-
ates queues.

In the test harness, the SoC is elaborated with val dut = Module(LazyModule(MySoC)). After elaboration,
the result will be a MySoC module, which contains a SerialAdapter module (among others).

From a high level, classes which extend LazyModule must reference their module implementation through lazy
val module, and they may optionally reference other lazy modules (which will elaborate as child modules in the
module hierarchy). The “inner” modules contain the implementation for the module, and may instantiate other normal
modules OR lazy modules (for nested Diplomacy graphs, for example).

Mix-in

A mix-in is a Scala trait, which sets parameters for specific system components, as well as enabling instantiation
and wiring of the relevant system components to system buses. The naming convention for an additive mix-in is
Has<YourMixin>. This is shown in the MySoC class where things such as HasPeripherySerial connect a
RTL component to a bus and expose signals to the top-level.

Additional References

A brief explanation of some of these topics is given in the following video: https://www.youtube.com/watch?v=
Eko86PGEoDY.

Initial Repository Setup

1.6. Table of Contents 9
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Requirements

Chipyard is developed and tested on Linux-based systems.

Warning: It is possible to use this on macOS or other BSD-based systems, although GNU tools will need to be
installed; it is also recommended to install the RISC-V toolchain from brew.

Warning: Working under Windows is not recommended.

In CentOS-based platforms, we recommend installing the following dependencies:

#!/bin/bash

sudo yum groupinstall -y "Development tools"
sudo yum install -y gmp-devel mpfr-devel libmpc-devel zlib-devel vim git java java-
→˓devel
curl https://bintray.com/sbt/rpm/rpm | sudo tee /etc/yum.repos.d/bintray-sbt-rpm.repo
sudo yum install -y sbt texinfo gengetopt
sudo yum install -y expat-devel libusb1-devel ncurses-devel cmake
→˓"perl(ExtUtils::MakeMaker)"
# deps for poky
sudo yum install -y python36 patch diffstat texi2html texinfo subversion chrpath git
→˓wget
# deps for qemu
sudo yum install -y gtk3-devel
# deps for firemarshal
sudo yum install -y python36-pip python36-devel rsync libguestfs-tools makeinfo expat
→˓ctags
# Install GNU make 4.x (needed to cross-compile glibc 2.28+)
sudo yum install -y centos-release-scl
sudo yum install -y devtoolset-8-make
# install DTC
sudo yum install -y dtc

In Ubuntu/Debian-based platforms (Ubuntu), we recommend installing the following dependencies:

#!/bin/bash

sudo apt-get install -y build-essential bison flex
sudo apt-get install -y libgmp-dev libmpfr-dev libmpc-dev zlib1g-dev vim git default-
→˓jdk default-jre
# install sbt: https://www.scala-sbt.org/release/docs/Installing-sbt-on-Linux.html
echo "deb https://dl.bintray.com/sbt/debian /" | sudo tee -a /etc/apt/sources.list.d/
→˓sbt.list
curl -sL "https://keyserver.ubuntu.com/pks/lookup?op=get&
→˓search=0x2EE0EA64E40A89B84B2DF73499E82A75642AC823" | sudo apt-key add
sudo apt-get update
sudo apt-get install -y sbt
sudo apt-get install -y texinfo gengetopt
sudo apt-get install -y libxpat1-dev libusb-dev libncurses5-dev cmake
# deps for poky
sudo apt-get install -y python3.6 patch diffstat texi2html texinfo subversion chrpath
→˓git wget

(continues on next page)
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(continued from previous page)

# deps for qemu
sudo apt-get install -y libgtk-3-dev
# deps for firemarshal
sudo apt-get install -y python3-pip python3.6-dev rsync libguestfs-tools expat ctags
# install DTC
sudo apt-get install -y device-tree-compiler

Note: When running on an Amazon Web Services EC2 FPGA-development instance (for FireSim), FireSim includes
a machine setup script that will install all of the aforementioned dependencies (and some additional ones).

Checking out the sources

After cloning this repo, you will need to initialize all of the submodules.

git clone https://github.com/ucb-bar/chipyard.git
cd chipyard
./scripts/init-submodules-no-riscv-tools.sh

Building a Toolchain

The toolchains directory contains toolchains that include a cross-compiler toolchain, frontend server, and proxy kernel,
which you will need in order to compile code to RISC-V instructions and run them on your design. Currently there are
two toolchains, one for normal RISC-V programs, and another for Hwacha (esp-tools). For custom installations,
Each tool within the toolchains contains individual installation procedures within its README file. To get a basic
installation (which is the only thing needed for most Chipyard use-cases), just the following steps are necessary.

./scripts/build-toolchains.sh riscv-tools # for a normal risc-v toolchain

# OR

./scripts/build-toolchains.sh esp-tools # for a modified risc-v toolchain with Hwacha
→˓vector instructions

Once the script is run, a env.sh file is emitted that sets the PATH, RISCV, and LD_LIBRARY_PATH environment
variables. You can put this in your .bashrc or equivalent environment setup file to get the proper variables. These
variables need to be set for the make system to work properly.

1.6.2 Simulation

Chipyard supports two classes of simulation:

1. Software RTL simulation using commercial or open-source (Verilator) RTL simulators

2. FPGA-accelerated full-system simulation using FireSim

Software RTL simulators of Chipyard designs run at O(1 KHz), but compile quickly and provide full waveforms. Con-
versly, FPGA-accelerated simulators run at O(100 MHz), making them appropriate for booting an operating system
and running a complete workload, but have multi-hour compile times and poorer debug visability.

Click next to see how to run a simulation.

1.6. Table of Contents 11
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Software RTL Simulation

Verilator (Open-Source)

Verilator is an open-source LGPL-Licensed simulator maintained by Veripool. The Chipyard framework can down-
load, build, and execute simulations using Verilator.

Synopsys VCS (License Required)

VCS is a commercial RTL simulator developed by Synopsys. It requires commercial licenses. The Chipyard frame-
work can compile and execute simulations using VCS. VCS simulation will generally compile faster than Verilator
simulations.

To run a VCS simulation, make sure that the VCS simulator is on your PATH.

Choice of Simulator

First, we will start by entering the Verilator or VCS directory:

For an open-source Verilator simulation, enter the sims/verilator directory

# Enter Verilator directory
cd sims/verilator

For a proprietry VCS simulation, enter the sims/vcs directory

# Enter VCS directory
cd sims/vcs

Simulating The Default Example

To compile the example design, run make in the selected verilator or VCS directory. This will elaborate the
RocketConfig in the example project.

An executable called simulator-example-RocketConfig will be produced. This executable is a simulator
that has been compiled based on the design that was built. You can then use this executable to run any compatible
RV64 code. For instance, to run one of the riscv-tools assembly tests.

./simulator-example-RocketConfig $RISCV/riscv64-unknown-elf/share/riscv-tests/isa/
→˓rv64ui-p-simple

Note: In a VCS simulator, the simulator name will be simv-example-RocketConfig instead of
simulator-example-RocketConfig.

Alternatively, we can run a pre-packaged suite of RISC-V assembly or benchmark tests, by adding the make target
run-asm-tests or run-bmark-tests. For example:

make run-asm-tests
make run-bmark-tests

12 Chapter 1. Quick Start
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Note: Before running the pre-packaged suites, you must run the plain make command, since the elaboration com-
mand generates a Makefile fragment that contains the target for the pre-packaged test suites. Otherwise, you will
likely encounter a Makefile target error.

Simulating A Custom Project

If you later create your own project, you can use environment variables to build an alternate configuration.

In order to construct the simulator with our custom design, we run the following command within the simulator
directory:

make SBT_PROJECT=... MODEL=... VLOG_MODEL=... MODEL_PACKAGE=... CONFIG=... CONFIG_
→˓PACKAGE=... GENERATOR_PACKAGE=... TB=... TOP=...

Each of these make variables correspond to a particular part of the design/codebase and are needed so that the make
system can correctly build and make a RTL simulation.

The SBT_PROJECT is the build.sbt project that holds all of the source files and that will be run during the RTL
build.

The MODEL and VLOG_MODEL are the top-level class names of the design. Normally, these are the same, but in some
cases these can differ (if the Chisel class differs than what is emitted in the Verilog).

The MODEL_PACKAGE is the Scala package (in the Scala code that says package ...) that holds the MODEL class.

The CONFIG is the name of the class used for the parameter Config while the CONFIG_PACKAGE is the Scala
package it resides in.

The GENERATOR_PACKAGE is the Scala package that holds the Generator class that elaborates the design.

The TB is the name of the Verilog wrapper that connects the TestHarness to VCS/Verilator for simulation.

Finally, the TOP variable is used to distinguish between the top-level of the design and the TestHarness in our
system. For example, in the normal case, the MODEL variable specifies the TestHarness as the top-level of the
design. However, the true top-level design, the SoC being simulated, is pointed to by the TOP variable. This separation
allows the infrastructure to separate files based on the harness or the SoC top level.

Common configurations of all these variables are packaged using a SUB_PROJECT make variable. Therefore, in
order to simulate a simple Rocket-based example system we can use:

make SUB_PROJECT=yourproject
./simulator-<yourproject>-<yourconfig> ...

All make targets that can be applied to the default example, can also be applied to custom project using the custom
environment variables. For example, the following code example will run the RISC-V assembly benchmark suite on
the Hwacha subproject:

make SUB_PROJECT=hwacha run-asm-tests

Finally, in the generated-src/<...>-<package>-<config>/ directory resides all of the collateral and
Verilog source files for the build/simulation. Specifically, the SoC top-level (TOP) Verilog file is denoted with *.
top.v while the TestHarness file is denoted with *.harness.v.

Generating Waveforms

If you would like to extract waveforms from the simulation, run the command make debug instead of just make.

1.6. Table of Contents 13
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For a Verilator simulation, this will generate a vcd file (vcd is a standard waveform representation file format) that can
be loaded to any common waveform viewer. An open-source vcd-capable waveform viewer is GTKWave.

For a VCS simulation, this will generate a vpd file (this is a proprietary waveform representation format used by
Synopsys) that can be loaded to vpd-supported waveform viewers. If you have Synopsys licenses, we recommend
using the DVE waveform viewer.

FPGA-Accelerated Simulation

FireSim

FireSim is an open-source cycle-accurate FPGA-accelerated full-system hardware simulation platform that runs on
cloud FPGAs (Amazon EC2 F1). FireSim allows RTL-level simulation at orders-of-magnitude faster speeds than
software RTL simulators. FireSim also provides additional device models to allow full-system simulation, including
memory models and network models.

FireSim currently supports running only on Amazon EC2 F1 FPGA-enabled virtual instances. In order to simulate
your Chipyard design using FireSim, if you have not already, follow the initial EC2 setup instructions as detailed
in the FireSim documentation. Then clone Chipyard onto your FireSim manager instance, and setup your Chipyard
repository as you would normally.

Next, initalize FireSim as a library in Chipyard by running:

# At the root of your chipyard repo
./scripts/firesim-setup.sh --fast

firesim-setup.sh initializes additional submodules and then invokes firesim’s build-setup.sh script
adding --library to properly initialize FireSim as a library submodule in chipyard. You may run ./sims/
firesim/build-setup.sh --help to see more options.

Finally, source the following environment at the root of the firesim directory:

cd sims/firesim
# (Recommended) The default manager environment (includes env.sh)
source sourceme-f1-manager.sh

Note: Every time you want to use FireSim with a fresh shell, you must source this sourceme-f1-manager.sh

At this point you’re ready to use FireSim with Chipyard. If you’re not already familiar with FireSim, please return to
the FireSim Docs, and proceed with the rest of the tutorial.

Current Limitations:

FireSim integration in Chipyard is still a work in progress. Presently, you cannot build a FireSim simulator from any
generator project in Chipyard except firechip, which properly invokes MIDAS on the target RTL.

In the interim, workaround this limitation by importing Config and Module classes from other generator projects into
FireChip. For example, assuming you Chipyard config looks as following:

class CustomConfig extends Config(
new WithInclusiveCache ++
new myproject.MyCustomConfig ++
new DefaultRocketConfig

)
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Then the equivalent FireChip config (in generators/firechip/src/main/scala/TargetConfigs.
scala) based on FireSimRocketChipConfig will look as follows:

class FireSimCustomConfig extends Config(
new WithBootROM ++
new WithPeripheryBusFrequency(BigInt(3200000000L)) ++
new WithExtMemSize(0x400000000L) ++ // 16GB
new WithoutTLMonitors ++
new WithUARTKey ++
new WithNICKey ++
new WithBlockDevice ++
new WithRocketL2TLBs(1024) ++
new WithPerfCounters ++
new WithoutClockGating ++
new WithInclusiveCache ++
new myproject.MyCustomConfig ++
new freechips.rocketchip.system.DefaultConfig)

You should then be able to refer to those classes or an alias of them in your DESIGN or TARGET_CONFIG variables.
Note that if your target machine has I/O not provided in the default FireChip targets (see generators/firechip/
src/main/scala/Targets.scala) you may need to write a custom bridge.

1.6.3 Generators

A Generator can be thought of as a generalized RTL design, written using a mix of meta-programming and standard
RTL. This type of meta-programming is enabled by the Chisel hardware description language (see Chisel). A standard
RTL design is essentially just a single instance of a design coming from a generator. However, by using meta-
programming and parameter systems, generators can allow for integration of complex hardware designs in automated
ways. The following pages introduce the generators integrated with the Chipyard framework.

Chipyard bundles the source code for the generators, under the generators/ directory. It builds them from source
each time (although the build system will cache results if they have not changed), so changes to the generators
themselves will automatically be used when building with Chipyard and propagate to software simulation, FPGA-
accelerated simulation, and VLSI flows.

Rocket Chip

Rocket Chip generator is an SoC generator developed at Berkeley and now supported by SiFive. Chipyard uses the
Rocket Chip generator as the basis for producing a RISC-V SoC.

Rocket Chip is distinct from Rocket core, the in-order RISC-V CPU generator. Rocket Chip includes many parts of
the SoC besides the CPU. Though Rocket Chip uses Rocket core CPUs by default, it can also be configured to use the
BOOM out-of-order core generator or some other custom CPU generator instead.

A detailed diagram of a typical Rocket Chip system is shown below.
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Tiles

The diagram shows a dual-core Rocket system. Each Rocket core is grouped with a page-table walker, L1 instruc-
tion cache, and L1 data cache into a RocketTile.

The Rocket core can also be swapped for a BOOM core. Each tile can also be configured with a RoCC accelerator
that connects to the core as a coprocessor.

Memory System

The tiles connect to the SystemBus, which connect it to the L2 cache banks. The L2 cache banks then connect to
the MemoryBus, which connects to the DRAM controller through a TileLink to AXI converter.

To learn more about the memory hierarchy, see Memory Hierarchy.
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MMIO

For MMIO peripherals, the SystemBus connects to the ControlBus and PeripheryBus.

The ControlBus attaches standard peripherals like the BootROM, the Platform-Level Interrupt Controller (PLIC),
the core-local interrupts (CLINT), and the Debug Unit.

The BootROM contains the first stage bootloader, the first instructions to run when the system comes out of reset. It
also contains the Device Tree, which is used by Linux to determine what other peripherals are attached.

The PLIC aggregates and masks device interrupts and external interrupts.

The core-local interrupts include software interrupts and timer interrupts for each CPU.

The Debug Unit is used to control the chip externally. It can be used to load data and instructions to memory or pull
data from memory. It can be controlled through a custom DMI or standard JTAG protocol.

The PeripheryBus attaches additional peripherals like the NIC and Block Device. It can also optionally expose an
external AXI4 port, which can be attached to vendor-supplied AXI4 IP.

To learn more about adding MMIO peripherals, check out the MMIO Peripheral section of Adding an Accelera-
tor/Device.

DMA

You can also add DMA devices that read and write directly from the memory system. These are attached to the
FrontendBus. The FrontendBus can also connect vendor-supplied AXI4 DMA devices through an AXI4 to
TileLink converter.

To learn more about adding DMA devices, see the Adding a DMA port section of Adding an Accelerator/Device.

Rocket Core

Rocket is a 5-stage in-order scalar processor core generator, originally developed at UC Berkeley and currently sup-
ported by SiFive. The Rocket core is used as a component within the Rocket Chip SoC generator. A Rocket core
combined with L1 caches (data and instruction caches) form a Rocket tile. The Rocket tile is the replicable component
of the Rocket Chip SoC generator.

The Rocket core supports the open-source RV64GC RISC-V instruction set and is written in the Chisel hardware
construction language. It has an MMU that supports page-based virtual memory, a non-blocking data cache, and a
front-end with branch prediction. Branch prediction is configurable and provided by a branch target buffer (BTB),
branch history table (BHT), and a return address stack (RAS). For floating-point, Rocket makes use of Berkeley’s
Chisel implementations of floating-point units. Rocket also supports the RISC-V machine, supervisor, and user privi-
lege levels. A number of parameters are exposed, including the optional support of some ISA extensions (M, A, F, D),
the number of floating-point pipeline stages, and the cache and TLB sizes.

For more information, please refer to the GitHub repository, technical report or to this Chisel Community Conference
video.
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Berkeley Out-of-Order Machine (BOOM)
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The Berkeley Out-of-Order Machine (BOOM) is a synthesizable and parameterizable open source RV64GC RISC-V
core written in the Chisel hardware construction language. It serves as a drop-in replacement to the Rocket core given
by Rocket Chip (replaces the RocketTile with a BoomTile). BOOM is heavily inspired by the MIPS R10k and the
Alpha 21264 out-of-order processors. Like the R10k and the 21264, BOOM is a unified physical register file design
(also known as “explicit register renaming”). Conceptually, BOOM is broken up into 10 stages: Fetch, Decode,
Register Rename, Dispatch, Issue, Register Read, Execute, Memory, Writeback and Commit. However, many of those
stages are combined in the current implementation, yielding seven stages: Fetch, Decode/Rename, Rename/Dispatch,
Issue/RegisterRead, Execute, Memory and Writeback (Commit occurs asynchronously, so it is not counted as part of
the “pipeline”).

Additional information about the BOOM micro-architecture can be found in the BOOM documentation pages.

Hwacha

The Hwacha project is developing a new vector architecture for future computer systems that are constrained in their
power and energy consumption. The Hwacha project is inspired by traditional vector machines from the 70s and
80s, and lessons learned from our previous vector-thread architectures such as Scale and Maven The Hwacha project
includes the Hwacha microarchitecture generator, as well as the XHwacha non-standard RISC-V extension. Hwacha
does not implement the RISC-V standard vector extension proposal.

For more information on the Hwacha project, please visit the Hwacha website.

To add the Hwacha vector unit to an SoC, you should add the hwacha.DefaultHwachaConfig config mixin
to the SoC configurations. The Hwacha vector unit uses the RoCC port of a Rocket or BOOM tile, and by default
connects to the memory system through the System Bus (i.e., directly to the L2 cache).

To change the configuration of the Hwacha vector unit, you can write a custom configuration to
replace the DefaultHwachaConfig. You can view the DefaultHwachaConfig under genera-
tors/hwacha/src/main/scala/configs.scala to see the possible configuration parameters.

Since Hwacha implements a non-standard RISC-V extension, it requires a unique software toolchain to be
able to compile and assemble its vector instructions. To install the Hwacha toolchain, run the ./scripts/
build-toolchains.sh esp-tools command within the root Chipyard directory. This may take a while,
and it will install the esp-tools-install directory within your Chipyard root directory. esp-tools is a fork
of riscv-tools (formerly a collection of relevant software RISC-V tools) that was enhanced with additional non-
standard vector instructions. However, due to the upstreaming of the equivalent RISC-V toolchains, esp-tools
may not be up-to-date with the latest mainline version of the tools included in it.

Gemmini

The Gemmini project is developing a systolic-array based matrix multiplication unit generator for the investigation of
software/hardware implications of such integrated SoC accelerators. It is inspired by recent trends in machine learning
accelerators for edge and mobile SoCs.

Gemmini is implemented as a RoCC accelerator with non-standard RISC-V custom instructions. The Gemmini unit
uses the RoCC port of a Rocket or BOOM tile, and by default connects to the memory system through the System Bus
(i.e., directly to the L2 cache).

To add a Gemmini unit to an SoC, you should add the gemmini.DefaultGemminiConfig config
mixin to the SoC configurations. To change the configuration of the Gemmini accelerator unit, you can
write a custom configuration to replace the DefaultGemminiConfig, which you can view under genera-
tors/gemmini/src/main/scala/configs.scala to see the possible configuration parameters.

The example Chipyard config includes the following example SoC configuration which includes Gemmini:
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class GemminiRocketConfig extends Config(
new WithTSI ++
new WithNoGPIO ++
new WithBootROM ++
new WithUART ++
new freechips.rocketchip.subsystem.WithNoMMIOPort ++
new freechips.rocketchip.subsystem.WithNoSlavePort ++
new freechips.rocketchip.subsystem.WithInclusiveCache ++
new gemmini.DefaultGemminiConfig ++ // use Gemmini systolic

→˓array GEMM accelerator
new freechips.rocketchip.subsystem.WithNBigCores(1) ++
new freechips.rocketchip.system.BaseConfig)

To build a simulation of this example Chipyard config, run the following commands:

cd sims/verilator # or "cd sims/vcs"
make CONFIG=GemminiRocketConfig

Generator Parameters

Major parameters of interest include:

• Systolic array dimensions (tileRows, tileColumns, meshRows, meshColumns): The systolic array is
composed of a 2-level hierarchy, in which each tile is fully combinational, while a mesh of tiles has pipeline
registers between each tile.

20 Chapter 1. Quick Start



Chipyard Documentation, Release 0.1

• Dataflow parameters (dataflow): Determine whether the systolic array in Gemmini is output-stationary or
weight-stationary, or whether it supports both dataflows so that programmers may choose between them at
runtime.

• Scratchpad and accumulator memory parameters (sp_banks, sp_capacity, acc_capacity): Determine
the properties of the Gemmini scratchpad memory: overall capacity of the scratchpad or accumulators (in KiB),
and the number of banks the scratchpad is divided into.

• Type parameters (inputType, outputType, accType): Determine the data-types flowing through dif-
ferent parts of a Gemmini accelerator. For example, inputType may be an 8-bit fixed-point number, while
accType, which determines the type of partial accumulations in a matrix multiplication, may be a 32-bit in-
teger. outputType only determines the type of the data passed between two processing elements (PEs); for
example, an 8-bit multiplication may produce a 16-bit result which must be shared between PEs in a systolic
array.

• Access-execute queue parameters (ld_queue_length, st_queue_length, ex_queue_length,
rob_entries): To implement access-execute decoupling, a Gemmini accelerator has a load instruction
queue, a store instruction queue, and an execute instruction queue. The relative sizes of these queue deter-
mine the level of access-execute decoupling. Gemmini also implements a reorder buffer (ROB) - the number of
entries in the ROB determines possible dependency management limitations.

• DMA parameters (dma_maxbytes, dma_buswidth, mem_pipeline): Gemmini implements a DMA to
move data from main memory to the Gemmini scratchpad, and from the Gemmini accumulators to main mem-
ory. The size of these DMA transactions is determined by the DMA parameters. These DMA parameters are
tightly coupled with Rocket Chip SoC system parameters: in particular dma_buswidth is associated with
the SystemBusKey beatBytes parameter, and dma_maxbytes is associated with cacheblockbytes
Rocket Chip parameters.

Software

The Gemmini non-standard ISA extension is specified in the Gemmini repository. The ISA includes configuration
instructions, data movement instructions (from main memory to the Gemmini scratchpad, and from the Gemmini
accumulators to main memory), and matrix multiplication execution instructions.

Since Gemmini instructions are not exposed through the GNU binutils assembler, several C macros are provided in
order to construct the instruction encodings to call these instructions.

The Gemmini generator includes a C matrix multiplication library which wraps the calls to the custom Gemmini
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instructions. The software directory of the generator includes the aforementioned library and macros, as well as
bare-metal tests, and some FireMarshal workloads to run the tests in a Linux environment. In particular, the matrix
multiplication C library can be found in the software/gemmini-rocc-tests/include/gemmini.h file.

The Gemmini generator generates a C header file based on the generator parameters. This header files gets compiled
together with the matrix multiplication library to tune library performance. The generated header file can be found
under software/gemmini-rocc-tests/include/gemmini_params.h

Build and Run Gemmini Tests

To build Gemmini tests:

cd generators/gemmini/software/gemmini-rocc-tests/
./build.sh

Afterwards, the test binaries will be found in generators/gemmini/software/gemmini-rocc-tests/
build. Binaries whose names end in -baremetal are meant to be run in a bare-metal environment, while binaries
whose names end in -linux are meant to run in a Linux environment. You can run the tests either on a cycle-accurate
RTL simulator, or on a (much faster) functional ISA simulator called Spike.

The Gemmini generator implements a custom non-standard version of Spike. This implementation is found within
the esp-tools Spike implementation, together with the Hwacha vector accelerator non-standard ISA-extension.
In order to use this version of Spike, please make sure to build the esp-tools software toolchain, as described in
Building a Toolchain.

In order to run Spike with the gemmini functional model, you will need to use the --extension=gemmini flag.
For example:

spike --extension=gemmini <some/gemmini/baremetal/test>

Spike is built by default without a commit log. However, if you would like to add detailed functional log of gem-
mini operation to the spike model, you can rebuild spike manually (based on the instructions in the esp-tools/
riscv-isa-sim/README file), with the --enable-gemminicommitlog option added to the configure
step.

Alternative SoC Configs

The Gemmini generator includes additional alternative SoC configs (configs that are not in the Chipyard example
project). If you would like to build one of these alternative SoC configurations which are defined in within the
Gemmini project repository, you can run the following commands. These commands are similar to the one required
when building a simulation from the example project, but they specify that the location of the configs are in the
Gemmini subproject, as opposed to the Chipyard example project:

cd sims/verilator # or "cd sims/vcs"
make CONFIG=GemminiAcceleratorConfig CONFIG_PACKAGE=gemmini MODEL_PACKAGE=freechips.
→˓rocketchip.system GENERATOR_PACKAGE=freechips.rocketchip.system
→˓TOP=ExampleRocketSystem

IceNet

IceNet is a library of Chisel designs related to networking. The main component of IceNet is IceNIC, a network
interface controller that is used primarily in FireSim for multi-node networked simulation. A diagram of IceNet’s
microarchitecture is shown below.
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There are four basic parts of the NIC: the Controller, which takes requests from and sends responses to the CPU; the
Send Path, which reads data from memory and sends it out to the network; the Receive Path, which receives data from
the network and writes it to memory; and, optionally, the Pause Handler, which generates Ethernet pause frames for
the purpose of flow control.

Controller

The controller exposes a set of MMIO registers to the CPU. The device driver writes to registers to request that packets
be sent or to provide memory locations to write received data to. Upon the completion of a send request or packet
receive, the controller sends an interrupt to the CPU, which clears the completion by reading from another register.

Send Path

The send path begins at the reader, which takes requests from the controller and reads the data from memory.

Since TileLink responses can come back out-of-order, we use a reservation queue to reorder responses so that the
packet data can be sent out in the proper order.

The packet data then goes to an arbiter, which can arbitrate access to the outbound network interface between the NIC
and one or more “tap in” interfaces, which come from other hardware modules that may want to send Ethernet packets.
By default, there are no tap in interfaces, so the arbiter simply passes the output of the reservation buffer through.

Receive Path

The receive path begins with the packet buffer, which buffers data coming in from the network. If there is insufficient
space in the buffer, it will drop data at packet granularity to ensure that the NIC does not deliver incomplete packets.

From the packet buffer, the data can optionally go to a network tap, which examines the Ethernet header and select
packets to be redirected from the NIC to external modules through one or more “tap out” interfaces. By default, there
are no tap out interfaces, so the data will instead go directly to the writer, which writes the data to memory and then
sends a completion to the controller.
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Pause Handler

IceNIC can be configured to have pause handler, which sits between the send and receive paths and the Ethernet
interface. This module tracks the occupancy of the receive packet buffer. If it sees the buffer filling up, it will send
an Ethernet pause frame out to the network to block further packets from being sent. If the NIC receives an Ethernet
pause frame, the pause handler will block sending from the NIC.

Linux Driver

The default Linux configuration provided by firesim-software contains an IceNet driver. If you launch a FireSim
image that has IceNIC on it, the driver will automatically detect the device, and you will be able to use the full Linux
networking stack in userspace.

Configuration

To add IceNIC to your design, add HasPeripheryIceNIC to your lazy module and
HasPeripheryIceNICModuleImp to the module implementation. If you are confused about the distinc-
tion between lazy module and module implementation, refer to Cake Pattern.

Then add the WithIceNIC config mixin to your configuration. This will define NICKey, which IceNIC uses to
determine its parameters. The mixin takes two arguments. The inBufFlits argument is the number of 64-bit flits
that the input packet buffer can hold and the usePauser argument determines whether or not the NIC will have a
pause handler.

Test Chip IP

Chipyard includes a Test Chip IP library which provides various hardware widgets that may be useful when designing
SoCs. This includes a Serial Adapter, Block Device Controller, TileLink SERDES, TileLink Switcher, and UART
Adapter.

Serial Adapter

The serial adapter is used by tethered test chips to communicate with the host processor. An instance of RISC-V
frontend server running on the host CPU can send commands to the serial adapter to read and write data from the
memory system. The frontend server uses this functionality to load the test program into memory and to poll for
completion of the program. More information on this can be found in Chipyard Boot Process.

Block Device Controller

The block device controller provides a generic interface for secondary storage. This device is primarily used in FireSim
to interface with a block device software simulation model. The default Linux configuration in firesim-software

To add a block device to your design, add HasPeripheryBlockDevice to your lazy module and
HasPeripheryBlockDeviceModuleImp to the implementation. Then add the WithBlockDevice config
mixin to your configuration.
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TileLink SERDES

The TileLink SERDES in the Test Chip IP library allow TileLink memory requests to be serialized so that they can be
carried off chip through a serial link. The five TileLink channels are multiplexed over two SERDES channels, one in
each direction.

There are three different variants provided by the library, TLSerdes exposes a manager interface to the chip, tunnels
A, C, and E channels on its outbound link, and tunnels B and D channels on its inbound link. TLDesser exposes a
client interface to the chip, tunnels A, C, and E on its inbound link, and tunnels B and D on its outbound link. Finally,
TLSerdesser exposes both client and manager interface to the chip and can tunnel all channels in both directions.

For an example of how to use the SERDES classes, take a look at the SerdesTest unit test in the Test Chip IP unit
test suite.

TileLink Switcher

The TileLink switcher is used when the chip has multiple possible memory interfaces and you would like to select
which channels to map your memory requests to at boot time. It exposes a client node, multiple manager nodes, and a
select signal. Depending on the setting of the select signal, requests from the client node will be directed to one of the
manager nodes. The select signal must be set before any TileLink messages are sent and be kept stable throughout the
remainder of operation. It is not safe to change the select signal once TileLink messages have begun sending.

For an example of how to use the switcher, take a look at the SwitcherTest unit test in the Test Chip IP unit tests.

UART Adapter

The UART Adapter is a device that lives in the TestHarness and connects to the UART port of the DUT to simulate
communication over UART (ex. printing out to UART during Linux boot). In addition to working with stdin/
stdout of the host, it is able to output a UART log to a particular file using +uartlog=<NAME_OF_FILE>
during simulation.

By default, this UART Adapter is added to all systems within Chipyard by adding the
CanHavePeripheryUARTWithAdapter and CanHavePeripheryUARTWithAdapterImp traits to
the Top system. These traits add a SiFive UART to the system as well as add the UART Adapter to the TestHarness.

SiFive Generators

Chipyard includes several open-source generators developed and maintained by SiFive. These are currently organized
within two submodules named sifive-blocks and sifive-cache.

Last-Level Cache Generator

sifive-cache includes last-level cache geneator. The Chipyard framework uses this last-level cache
as an L2 cache. To use this L2 cache, you should add the freechips.rocketchip.subsystem.
WithInclusiveCache mixin to your SoC configuration. To learn more about configuring this L2 cache, please
refer to the Memory Hierarchy section.

Peripheral Devices

sifive-blocks includes multiple peripheral device generators, such as UART, SPI, PWM, JTAG, GPIO and more.
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These peripheral devices usually affect the memory map of the SoC, and its top-level IO as well. To integrate one of
these devices in your SoC, you will need to define a custom mixin with the approriate address for the device using the
Rocket Chip parameter system. As an example, for a GPIO device you could add the following mixin to set the GPIO
address to 0x10012000. This address is the start address for the GPIO configuration registers.

/**
* Mixin to add GPIOs and tie them off outside the DUT

*/
class WithGPIO extends Config((site, here, up) => {

case PeripheryGPIOKey => Seq(
GPIOParams(address = 0x10012000, width = 4, includeIOF = false))

case BuildTop => (clock: Clock, reset: Bool, p: Parameters, success: Bool) => {
val top = up(BuildTop, site)(clock, reset, p, success)
// TODO: Currently FIRRTL will error if the GPIO input
// pins are unconnected, so tie them to 0.
// In future IO cell blackboxes will replace this with
// more correct functionality
for (gpio <- top.gpio) {
for (pin <- gpio.pins) {
pin.i.ival := false.B

}
}
top

}
})

Additionally, if the device requires top-level IOs, you will need to define a mixin to change the top-level configuration
of your SoC. When adding a top-level IO, you should also be aware of whether it interacts with the test-harness.

This example instantiates a top-level module with include GPIO ports (TopWithGPIO), and then ties-off the GPIO
port inputs to 0 (false.B).

Finally, you add the relevant config mixin to the SoC config. For example:

class GPIORocketConfig extends Config(
new WithTSI ++
new WithGPIO ++ // add GPIOs to the

→˓peripherybus
new WithBootROM ++
new WithUART ++
new freechips.rocketchip.subsystem.WithNoMMIOPort ++
new freechips.rocketchip.subsystem.WithNoSlavePort ++
new freechips.rocketchip.subsystem.WithInclusiveCache ++
new freechips.rocketchip.subsystem.WithNBigCores(1) ++
new freechips.rocketchip.system.BaseConfig)

Some of the devices in sifive-blocks (such as GPIO) may already have pre-defined mixins within the Chipyard
example project. You may be able to use these config mixins directly, but you should be aware of their addresses
within the SoC address map.

SHA3 RoCC Accelerator

The SHA3 accelerator is a basic RoCC accelerator for the SHA3 hashing algorithm. We like using SHA3 in Chipyard
tutorial content because it is a self-contained, simple example of integrating a custom accelerator into Chipyard.
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Introduction

Secure hashing algorithms represent a class of hashing functions that provide four attributes: ease of hash computation,
inability to generate the message from the hash (one-way property), inability to change the message and not the
hash (weakly collision free property), and inability to find two messages with the same hash (strongly collision free
property). The National Institute of Standards and Technology (NIST) recently held a competition for a new algorithm
to be added to its set of Secure Hashing Algorithms (SHA). In 2012 the winner was determined to be the Keccak
hashing function and a rough specification for SHA3 was established. The algorithm operates on variable length
messages with a sponge function, and thus alternates between absorbing chunks of the message into a set of state bits
and permuting the state. The absorbing is a simple bitwise XOR while the permutation is a more complex function
composed of several operations, 𝜒, 𝜃, 𝜌, 𝜋, 𝜄, that all perform various bitwise operations, including rotations, parity
calculations, XORs, etc. The Keccak hashing function is parameterized for different sizes of state and message chunks
but for this accelerator we will only support the Keccak-256 variant with 1600 bits of state and 1088 bit message
chunks. A diagram of the SHA3 accelerator is shown below.

Technical Details

The accelerator is designed around three sub-systems, an interface with the processor, an interface with memory, and
the actual hashing computation system. The interface with the processor is designed using the ROCC interface for
coprocessors integrating with the RISC-V Rocket/BOOM processor. It includes the ability to transfer two 64 bit words
to the co-processor, the request for a return value, and a small field for the function requested. The accelerator receives
these requests using a ready/valid interface. The ROCC instruction is parsed and the needed information is stored into
a execution context. The execution context contains the memory address of the message being hashed, the memory
address to store the resulting hash in, the length of the message, and several other control fields.

Once the execution context is valid the memory subsystem then begins to fetch chunks of the message. The memory
subsystem is fully decoupled from the other subsystems and maintains a single full round memory buffers. The
accelerators memory interface can provide a maximum of one 64 bit word per cycle which corresponds to 17 requests
needed to fill a buffer (the size is dictated by the SHA3 algorithm). Memory requests to fill these buffers are sent out
as rapidly as the memory interface can handle, with a tag field set to allow the different memory buffers requests to be
distinguished, as they may be returned out of order. Once the memory subsystem has filled a buffer the control unit
absorbs the buffer into the execution context, at which point the execution context is free to begin permutation, and
the memory buffer is free to send more memory requests.

After the buffer is absorbed, the hashing computation subsystem begins the permutation operations. Once the message
is fully hashed, the hash is written to memory with a simple state machine.
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Using a SHA3 Accelerator

Since the SHA3 accelerator is designed as a RoCC accelerator, it can be mixed into a Rocket or BOOM core by
overriding the BuildRoCC key. The configuration mixin is defined in the SHA3 generator. An example configuration
highlighting the use of this mixin is shown here:

class Sha3RocketConfig extends Config(
new WithTSI ++
new WithNoGPIO ++
new WithBootROM ++
new WithUART ++
new freechips.rocketchip.subsystem.WithNoMMIOPort ++
new freechips.rocketchip.subsystem.WithNoSlavePort ++
new freechips.rocketchip.subsystem.WithInclusiveCache ++
new sha3.WithSha3Accel ++ // add SHA3 rocc

→˓accelerator
new freechips.rocketchip.subsystem.WithNBigCores(1) ++
new freechips.rocketchip.system.BaseConfig)

The SHA3 example baremetal and Linux tests are located in the SHA3 repository. Please refer to its README.md
for more information on how to run/build the tests.

1.6.4 Tools

The Chipyard framework relays heavily on a set of Scala-based tools. The following pages will introduce them, and
how we can use them in order to generate flexible designs.

Chisel

Chisel is an open-source hardware description language embedded in Scala. It supports advanced hardware design
using highly parameterized generators and supports things such as Rocket Chip and BOOM.

After writing Chisel, there are multiple steps before the Chisel source code “turns into” Verilog. First is the compilation
step. If Chisel is thought as a library within Scala, then these classes being built are just Scala classes which call Chisel
functions. Thus, any errors that you get in compiling the Scala/Chisel files are errors that you have violated the typing
system, messed up syntax, or more. After the compilation is complete, elaboration begins. The Chisel generator starts
elaboration using the module and configuration classes passed to it. This is where the Chisel “library functions” are
called with the parameters given and Chisel tries to construct a circuit based on the Chisel code. If a runtime error
happens here, Chisel is stating that it cannot “build” your circuit due to “violations” between your code and the Chisel
“library”. However, if that passes, the output of the generator gives you an FIRRTL file and other misc collateral! See
FIRRTL for more information on how to get a FIRRTL file to Verilog.

For an interactive tutorial on how to use Chisel and get started please visit the Chisel Bootcamp. Otherwise, for all
things Chisel related including API documentation, news, etc, visit their website.

FIRRTL

FIRRTL is an intermediate representation of your circuit. It is emitted by the Chisel compiler and is used to trans-
late Chisel source files into another representation such as Verilog. Without going into too much detail, FIRRTL is
consumed by a FIRRTL compiler (another Scala program) which passes the circuit through a series of circuit-level
transformations. An example of a FIRRTL pass (transformation) is one that optimizes out unused signals. Once the
transformations are done, a Verilog file is emitted and the build process is done.

For more information on please visit their website.

28 Chapter 1. Quick Start

https://github.com/ucb-bar/sha3/blob/master/README.md
https://chisel-lang.org/
https://github.com/freechipsproject/chisel-bootcamp
https://chisel-lang.org/
https://github.com/freechipsproject/firrtl
https://chisel-lang.org/firrtl/


Chipyard Documentation, Release 0.1

Treadle and FIRRTL Interpreter

Treadle and FIRRTL Interpreter are circuit simulators that directly execute FIRRTL (specifically low-firrtl IR). Treadle
is the replacement for FIRRTL Interpreter but FIRRTL Interpreter is still used within some projects. Treadle is useful
for simulating modules in a larger SoC design. Many projects use Treadle for interactive debugging and a low-overhead
simulator.

Chisel Testers

Chisel Testers is a library for writing tests for Chisel designs. It provides a Scala API for interacting with a DUT. It
can use multiple backends, including things such as Treadle and Verilator. See Treadle and FIRRTL Interpreter and
Software RTL Simulation for more information on these simulation methods.

Dsptools

Dsptools is a Chisel library for writing custom signal processing hardware. Additionally, dsptools is useful for inte-
grating custom signal processing hardware into an SoC (especially a Rocket-based SoC).

Some features:

• Complex type

• Typeclasses for writing polymorphic hardware generators * For example, write one FIR filter generator that
works for real or complex inputs

• Extensions to Chisel testers for fixed point and floating point types

• A diplomatic implementation of AXI4-Stream

• Models for verifying APB, AXI-4, and TileLink interfaces with chisel-testers

• DSP building blocks

Barstools

Barstools is a collection of useful FIRRTL transformations and compilers to help the build process. Included in
the tools are a MacroCompiler (used to map Chisel memory constructs to vendor SRAMs), FIRRTL transforms (to
separate harness and top-level SoC files), and more.

1.6.5 VLSI Flow

The Chipyard framework aims to provide wrappers for a general VLSI flow. In particular, we aim to support the
Hammer physical design generator flow.

Building A Chip

Note: Please refer to the other sections in VLSI for tools/flows on how to build a chip. This section will be filled in
ASAP.
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Core Hammer

Hammer is a physical design flow which encourages reusability by partitioning physical design specifications into three
distinct concerns: design, CAD tool, and process technology. Hammer wraps around vendor specific technologies and
tools to provide a single API to address ASIC design concerns. Hammer allows for reusability in ASIC design while
still providing the designers leeway to make their own modifications.

For more information, read the Hammer paper and see the GitHub repository and associated documentation.

Hammer implements a VLSI flow using the following high-level constructs:

Actions

Actions are the top-level tasks Hammer is capable of executing (e.g. synthesis, place-and-route, etc.)

Steps

Steps are the sub-components of actions that individually addressable in Hammer (e.g. placement in the place-and-
route action).

Hooks

Hooks are modifications to steps or actions that are programmatically defined in a Hammer configuration.

Configuration (Hammer IR)

To configure a Hammer flow, supply a set yaml or json configuration files that chooses the tool and technology
plugins and versions as well as any design specific configuration options. Collectively, this configuration API is
referred to as Hammer IR and can be generated from higher-level abstractions.

The current set of all available Hammer APIs is codified here.

Tool Plugins

Hammer supports separately managed plugins for different CAD tool vendors. You may be able to acquire access
to the included Cadence, Synopsys, and Mentor plugins repositories with permission from the respective CAD tool
vendor. The types of tools (by Hammer names) supported currently include:

• synthesis

• par

• drc

• lvs

• sram_generator

• pcb

Several configuration variables are needed to configure your tool plugin of choice.

First, select which tool to use for each action by setting vlsi.core.<tool_type>_tool to the name of your
tool, e.g. vlsi.core.par_tool: "innovus".
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Then, point Hammer to the folder that contains your tool plugin by setting vlsi.core.
<tool_type>_tool_path. This directory should include a folder with the name of the tool, which itself
includes a python file __init__.py and a yaml file defaults.yml. Customize the version of the tool by setting
<tool_type>.<tool_name>.version to a tool specific string.

The __init__.py file should contain a variable, tool, that points to the class implementing this tool. This class
should be a subclass of Hammer<tool_type>Tool, which will be a subclass of HammerTool. The class should
implement methods for all the tool’s steps.

The defaults.yml file contains tool-specific configuration variables. The defaults may be overridden as necessary.

Technology Plugins

Hammer supports separately managed technology plugins to satisfy NDAs. You may be able to acquire access to
certain pre-built technology plugins with permission from the technology vendor. Or, to build your own tech plugin,
you need at least a <tech_name>.tech.json and defaults.yml. An __init__.py is optional if there are
any technology-specific methods or hooks to run.

The ASAP7 plugin is a good starting point for setting up a technology plugin because it is an open-source example that
is not suitable for taping out a chip. Refer to Hammer’s documentation for the schema and detailed setup instructions.

Several configuration variables are needed to configure your technology of choice.

First, choose the technology, e.g. vlsi.core.technology: asap7, then point to the location
with the PDK tarball with technology.<tech_name>.tarball_dir or pre-installed directory with
technology.<tech_name>.install_dir and (if applicable) the plugin repository with vlsi.core.
technology_path.

Technology-specific options such as supplies, MMMC corners, etc. are defined in their respective vlsi.inputs.
.. configurations. Options for the most common use case are already defined in the technology’s defaults.yml
and can be overridden by the user.

ASAP7 Tutorial

The vlsi folder of this repository contains an example Hammer flow with the SHA-3 accelerator and a dummy hard
macro. This example tutorial uses the built-in ASAP7 technology plugin and requires access to the included Cadence
and Mentor tool plugin submodules. Cadence is necessary for synthesis & place-and-route, while Mentor is needed
for DRC & LVS.

Project Structure

This example gives a suggested file structure and build system. The vlsi/ folder will eventually contain the following
files and folders:

• Makefile

– Integration of Hammer’s build system into Chipyard and abstracts away some Hammer commands.

• build

– Hammer output directory. Can be changed with the OBJ_DIR variable.

– Will contain subdirectories such as syn-rundir and par-rundir and the inputs.yml denoting
the top module and input Verilog files.

• env.yml
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– A template file for tool environment configuration. Fill in the install and license server paths for your
environment.

• example-vlsi

– Entry point to Hammer. Contains example placeholders for hooks.

• example.v

– Verilog wrapper around the accelerator and dummy hard macro.

• example.yml

– Hammer IR for this tutorial.

• extra_libraries

– Contains collateral for the dummy hard macro.

• generated-src

– All of the elaborated Chisel and FIRRTL.

• hammer, hammer-<vendor>-plugins, hammer-<tech>-plugin

– Core, tool, tech repositories.

Prerequisites

• Python 3.4+

• numpy and gdspy packages

• Genus, Innovus, and Calibre licenses

• For ASAP7 specifically:

– Download the ASAP7 PDK tarball to a directory of choice but do not extract it. The tech plugin is
configured to extract the PDK into a cache directory for you.

– If you have additional ASAP7 hard macros, their LEF & GDS need to be 4x upscaled @ 4000 DBU
precision. They may live outside extra_libraries at your discretion.

– Innovus version must be >= 15.2 or <= 18.1 (ISRs excluded).

Initial Setup

In the Chipyard root, run:

./scripts/init-vlsi.sh asap7

to pull the Hammer & plugin submodules. Note that for technologies other than asap7, the tech submodule must be
added in the vlsi folder first.

Pull the Hammer environment into the shell:

cd vlsi
export HAMMER_HOME=$PWD/hammer
source $HAMMER_HOME/sourceme.sh
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Building the Design

To elaborate the Sha3RocketConfig (Rocket Chip w/ the accelerator) and set up all prerequisites for the build
system to push just the accelerator + hard macro through the flow:

make buildfile MACROCOMPILER_MODE='--mode synflops' CONFIG=Sha3RocketConfig VLSI_
→˓TOP=Sha3AccelwBB

The MACROCOMPILER_MODE='--mode synflops' is needed because the ASAP7 process does not yet have a
memory compiler, so flip-flop arrays are used instead. This will dramatically increase the synthesis runtime if your
design has a lot of memory state (e.g. large caches). This change is automatically inferred by the makefile but is
included here for completeness.

The CONFIG=Sha3RocketConfig selects the target generator config in the same manner as the rest of the Chip-
yard framework. This elaborates a Rocket Chip with the Sha3Accel module.

The VLSI_TOP=Sha3AccelwBB indicates that we are only interested in physical design of the accelerator block.
If this variable is not set, the entire SoC will be pushed through physical design. Note that you should not set the TOP
variable because it is used during Chisel elaboration.

For the curious, make buildfile generates a set of Make targets in build/hammer.d. It needs to be re-run
if environment variables are changed. It is recommended that you edit these variables directly in the Makefile rather
than exporting them to your shell environment.

Running the VLSI Flow

example-vlsi

This is the entry script with placeholders for hooks. In the ExampleDriver class, a list of hooks is passed in the
get_extra_par_hooks. Hooks are additional snippets of python and TCL (via x.append()) to extend the
Hammer APIs. Hooks can be inserted using the make_pre/post/replacement_hook methods as shown in
this example. Refer to the Hammer documentation on hooks for a detailed description of how these are injected into
the VLSI flow.

The scale_final_gds hook is a particularly powerful hook. It dumps a Python script provided by the ASAP7 tech
plugin, an executes it within the Innovus TCL interpreter, and should be inserted after write_design. This hook
is necessary because the ASAP7 PDK does place-and-route using 4x upscaled LEFs for Innovus licensing reasons,
thereby requiring the cells created in the post-P&R GDS to be scaled down by a factor of 4.

example.yml

This contains the Hammer configuration for this example project. Example clock constraints, power straps definitions,
placement constraints, and pin constraints are given. Additional configuration for the extra libraries and tools are at
the bottom.

First, set technology.asap7.tarball_dir to the absolute path of where the downloaded the ASAP7 PDK
tarball lives.

Synthesis

make syn
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Post-synthesis logs and collateral are in build/syn-rundir. The raw QoR data is available at build/
syn-rundir/reports, and methods to extract this information for design space exploration are a WIP.

Place-and-Route

make par

After completion, the final database can be opened in an interactive Innovus session via ./build/par-rundir/
generated-scripts/open_chip.

Intermediate database are written in build/par-rundir between each step of the par action, and can be restored
in an interactive Innovus session as desired for debugging purposes.

Timing reports are found in build/par-rundir/timingReports. They are gzipped text files.

gdspy can be used to view the final layout, but it is somewhat crude and slow (wait a few minutes for it to load):

python3 view_gds.py build/par-rundir/Sha3AccelwBB.gds

By default, this script only shows the M2 thru M4 routing. Layers can be toggled in the layout viewer’s side pane and
view_gds.py has a mapping of layer numbers to layer names.

DRC & LVS

To run DRC & LVS, and view the results in Calibre:

make drc
./build/drc-rundir/generated-scripts/view-drc
make lvs
./build/lvs-rundir/generated-scripts/view-lvs

Some DRC errors are expected from this PDK, as explained in the ASAP7 plugin readme.

Advanced Usage

Alternative RTL Flows

The Make-based build system provided supports using Hammer without using RTL generated by Chipyard. To
push a custom Verilog module through, one only needs to append the following environment variables to the make
buildfile command (or edit them directly in the Makefile).

CUSTOM_VLOG=<your Verilog files>
VLSI_TOP=<your top module>

CUSTOM_VLOG breaks the dependency on the rest of the Chipyard infrastructure and does not start any
Chisel/FIRRTL elaboration. VLSI_TOP selects the top module from your custom Verilog files.

Under the Hood

To uncover what is happening under the hood, here are the commands that are executed:

For make syn:
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./example-vlsi -e /path/to/env.yml -p /path/to/example.yml -p /path/to/inputs.yml --
→˓obj_dir /path/to/build syn

example-vlsi is the entry script as explained before, -e provides the environment yml, -p points to configuration
yml/jsons, --obj_dir speficies the destination directory, and syn is the action.

For make par:

./example-vlsi -e /path/to/env.yml -p /path/to/syn-output-full.json -o /path/to/par-
→˓input.json --obj_dir /path/to/build syn-to-par
./example-vlsi -e /path/to/env.yml -p /path/to/par-input.json --obj_dir /path/to/
→˓build par

A syn-to-par action translates the synthesis output configuration into an input configuration given by -o. Then,
this is passed to the par action.

For more information about all the options that can be passed to the Hammer command-line driver, please see the
Hammer documentation.

Manual Step Execution & Dependency Tracking

It is invariably necessary to debug certain steps of the flow, e.g. if the power strap settings need to be updated. The
underlying Hammer commands support options such as --to_step, --from_step, and --only_step. These
allow you to control which steps of a particular action are executed.

Make’s dependency tracking can sometimes result in re-starting the entire flow when the user only wants to re-run a
certain action. Hammer’s build system has “redo” targets such as redo-syn and redo-par to run certain actions
without typing out the entire Hammer command.

Say you need to update some power straps settings in example.yml and want to try out the new settings:

make redo-par HAMMER_REDO_ARGS='-p example.yml --only_step power_straps'

Simulation

With the Synopsys plugin, RTL and gate-level simulation is supported using VCS. While this example does not
implement any simulation, refer to Hammer’s documentation for how to set it up for your design.

1.6.6 Customization

These guides will walk you through customization of your system-on-chip:

• Contructing heterogenous systems-on-chip using the existing Chipyard generators and configuration system.

• How to include your custom Chisel sources in the Chipyard build system

• Adding custom RoCC accelerators to an existing Chipyard core (BOOM or Rocket)

• Adding custom MMIO widgets to the Chipyard memory system by Tilelink or AXI4, with custom Top-level
IOs

• Standard practices for using Keys, Traits, and Configs to parameterize your design

• Customizing the memory hierarchy

• Connect widgets which act as TileLink masters
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• Adding custom blackboxed Verilog to a Chipyard design

We also provide information on:

• The boot process for Chipyard SoCs

• Examples of FIRRTL transforms used in Chipyard, and where they are specified

We recommend reading all these pages in order. Hit next to get started!

Heterogeneous SoCs

The Chipyard framework involves multiple cores and accelerators that can be composed in arbitrary ways. This
discussion will focus on how you combine Rocket, BOOM and Hwacha in particular ways to create a unique SoC.

Creating a Rocket and BOOM System

Instantiating an SoC with Rocket and BOOM cores is all done with the configuration system and two specific mixins.
Both BOOM and Rocket have mixins labelled WithNBoomCores(X) and WithNBigCores(X) that automati-
cally create X copies of the core/tile1. When used together you can create a heterogeneous system.

The following example shows a dual core BOOM with a single core Rocket.

class DualLargeBoomAndHwachaRocketConfig extends Config(
new WithTSI ++
new WithNoGPIO ++
new WithBootROM ++
new WithUART ++
new freechips.rocketchip.subsystem.WithInclusiveCache ++
new freechips.rocketchip.subsystem.WithNoMMIOPort ++
new freechips.rocketchip.subsystem.WithNoSlavePort ++
new WithMultiRoCC ++ // support heterogeneous rocc
new WithMultiRoCCHwacha(2) ++ // put hwacha on hart-2

→˓(rocket)
new boom.common.WithRenumberHarts ++
new boom.common.WithLargeBooms ++
new boom.common.WithNBoomCores(2) ++
new freechips.rocketchip.subsystem.WithNBigCores(1) ++
new freechips.rocketchip.system.BaseConfig)

In this example, the WithNBoomCores and WithNBigCores mixins set up the default parameters for the multiple
BOOM and Rocket cores, respectively. However, for BOOM, an extra mixin called WithLargeBooms is added to
override the default parameters with a different set of more common default parameters. This mixin applies to all
BOOM cores in the system and changes the parameters for each.

Great! Now you have a heterogeneous setup with BOOMs and Rockets. The final thing you need to make this system
work is to renumber the hartId’s of the cores so that each core has a unique hartId (a hartId is the hardware
thread id of the core). The WithRenumberHarts mixin solves this by assigning a unique hartId to all cores in
the system (it can label the Rocket cores first or the BOOM cores first). The reason this is needed is because by default
the WithN...Cores(X) mixin assumes that there are only BOOM or only Rocket cores in the system. Thus,
without the WithRenumberHarts mixin, each set of cores is labeled starting from zero causing multiple cores to
be assigned the same hartId.

1 Note, in this section “core” and “tile” are used interchangeably but there is subtle distinction between a “core” and “tile” (“tile” contains a
“core”, L1D/I$, PTW). For many places in the documentation, we usually use “core” to mean “tile” (doesn’t make a large difference but worth the
mention).
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Another alternative option to create a multi heterogeneous core system is to override the parameters yourself so you
can specify the core parameters per core. The mixin to add to your system would look something like the following.

// create 6 cores (4 boom and 2 rocket)
class WithHeterCoresSetup extends Config((site, here, up) => {

case BoomTilesKey => {
val boomTile0 = BoomTileParams(...) // params for boom core 0
val boomTile1 = BoomTileParams(...) // params for boom core 1
val boomTile2 = BoomTileParams(...) // params for boom core 2
val boomTile3 = BoomTileParams(...) // params for boom core 3
boomTile0 ++ boomTile1 ++ boomTile2 ++ boomTile3

}

case RocketTilesKey => {
val rocketTile0 = RocketTileParams(...) // params for rocket core 0
val rocketTile1 = RocketTileParams(...) // params for rocket core 1
rocketTile0 ++ rocketTile1

}
})

Then you could use this new mixin like the following.

class SixCoreConfig extends Config(
new WithTSI ++
new WithNoGPIO ++
new WithBootROM ++
new WithUART ++
new freechips.rocketchip.subsystem.WithNoMMIOPort ++
new freechips.rocketchip.subsystem.WithNoSlavePort ++
new WithHeterCoresSetup ++
new freechips.rocketchip.system.BaseConfig)

Note, in this setup you need to specify the hartId of each core in the “TileParams”, where each hartId is unique.

Adding Hwachas

Adding a Hwacha accelerator is as easy as adding the DefaultHwachaConfig so that it can setup the Hwacha
parameters and add itself to the BuildRoCC parameter. An example of adding a Hwacha to all tiles in the system is
below.

class HwachaLargeBoomAndHwachaRocketConfig extends Config(
new WithTSI ++
new WithNoGPIO ++
new WithBootROM ++
new WithUART ++
new hwacha.DefaultHwachaConfig ++ // add hwacha to all harts
new freechips.rocketchip.subsystem.WithInclusiveCache ++
new freechips.rocketchip.subsystem.WithNoMMIOPort ++
new freechips.rocketchip.subsystem.WithNoSlavePort ++
new boom.common.WithRenumberHarts ++
new boom.common.WithLargeBooms ++
new boom.common.WithNBoomCores(1) ++
new freechips.rocketchip.subsystem.WithNBigCores(1) ++
new freechips.rocketchip.system.BaseConfig)

In this example, Hwachas are added to both BOOM tiles and to the Rocket tile. All with the same Hwacha parameters.
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Assigning Accelerators to Specific Tiles with MultiRoCC

Located in generators/example/src/main/scala/ConfigMixins.scala is a mixin that provides sup-
port for adding RoCC accelerators to specific tiles in your SoC. Named MultiRoCCKey, this key allows you to attach
RoCC accelerators based on the hartId of the tile. For example, using this allows you to create a 8 tile system with
a RoCC accelerator on only a subset of the tiles. An example is shown below with two BOOM cores, and one Rocket
tile with a RoCC accelerator (Hwacha) attached.

class DualLargeBoomAndHwachaRocketConfig extends Config(
new WithTSI ++
new WithNoGPIO ++
new WithBootROM ++
new WithUART ++
new freechips.rocketchip.subsystem.WithInclusiveCache ++
new freechips.rocketchip.subsystem.WithNoMMIOPort ++
new freechips.rocketchip.subsystem.WithNoSlavePort ++
new WithMultiRoCC ++ // support heterogeneous rocc
new WithMultiRoCCHwacha(2) ++ // put hwacha on hart-2

→˓(rocket)
new boom.common.WithRenumberHarts ++
new boom.common.WithLargeBooms ++
new boom.common.WithNBoomCores(2) ++
new freechips.rocketchip.subsystem.WithNBigCores(1) ++
new freechips.rocketchip.system.BaseConfig)

In this example, the WithRenumberHarts relabels the hartId’s of all the BOOM/Rocket cores. Then after
that is applied to the parameters, the WithMultiRoCCHwacha mixin assigns a Hwacha accelerator to a particular
hartId (in this case, the hartId of 2 corresponds to the Rocket core). Finally, the WithMultiRoCC mixin is
called. This mixin sets the BuildRoCC key to use the MultiRoCCKey instead of the default. This must be used
after all the RoCC parameters are set because it needs to override the BuildRoCC parameter. If this is used earlier in
the configuration sequence, then MultiRoCC does not work.

This mixin can be changed to put more accelerators on more cores by changing the arguments to cover more hartId’s
(i.e. WithMultiRoCCHwacha(0,1,3,6,...)).

Integrating Custom Chisel Projects into the Generator Build System

Warning: This section assumes integration of custom Chisel through git submodules. While it is possible
to directly commit custom Chisel into the Chipyard framework, we heavily recommend managing custom code
through git submodules. Using submodules decouples development of custom features from development on the
Chipyard framework.

While developing, you want to include Chisel code in a submodule so that it can be shared by different projects. To
add a submodule to the Chipyard framework, make sure that your project is organized as follows.

yourproject/
build.sbt
src/main/scala/

YourFile.scala

Put this in a git repository and make it accessible. Then add it as a submodule to under the following directory
hierarchy: generators/yourproject.
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The build.sbt is a minimal file which describes metadata for a Chisel project. For a simple project, the build.
sbt can even be empty, but below we provide an example build.sbt.

organization := "edu.berkeley.cs"

version := "1.0"

name := "yourproject"

scalaVersion := "2.12.4"

cd generators/
git submodule add https://git-repository.com/yourproject.git

Then add yourproject to the Chipyard top-level build.sbt file.

lazy val yourproject = (project in file("generators/yourproject")).
→˓settings(commonSettings).dependsOn(rocketchip)

You can then import the classes defined in the submodule in a new project if you add it as a dependency. For instance,
if you want to use this code in the example project, change the final line in build.sbt to the following.

lazy val example = (project in file(".")).settings(commonSettings).
→˓dependsOn(testchipip, yourproject)

RoCC vs MMIO

Accelerators or custom IO devices can be added to your SoC in several ways:

• MMIO Peripheral (a.k.a TileLink-Attached Accelerator)

• Tightly-Coupled RoCC Accelerator

These approaches differ in the method of the communication between the processor and the custom block.

With the TileLink-Attached approach, the processor communicates with MMIO peripherals through memory-mapped
registers.

In contrast, the processor communicates with a RoCC accelerators through a custom protocol and custom non-standard
ISA instructions reserved in the RISC-V ISA encoding space. Each core can have up to four accelerators that are
controlled by custom instructions and share resources with the CPU. RoCC coprocessor instructions have the following
form.

customX rd, rs1, rs2, funct

The X will be a number 0-3, and determines the opcode of the instruction, which controls which accelerator an
instruction will be routed to. The rd, rs1, and rs2 fields are the register numbers of the destination register and two
source registers. The funct field is a 7-bit integer that the accelerator can use to distinguish different instructions
from each other.

Note that communication through a RoCC interface requires a custom software toolchain, whereas MMIO peripherals
can use that standard toolchain with appropriate driver support.

Adding a RoCC Accelerator

RoCC accelerators are lazy modules that extend the LazyRoCC class. Their implementation should extends the
LazyRoCCModule class.
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class CustomAccelerator(opcodes: OpcodeSet)
(implicit p: Parameters) extends LazyRoCC(opcodes) {

override lazy val module = new CustomAcceleratorModule(this)
}

class CustomAcceleratorModule(outer: CustomAccelerator)
extends LazyRoCCModuleImp(outer) {

val cmd = Queue(io.cmd)
// The parts of the command are as follows
// inst - the parts of the instruction itself
// opcode
// rd - destination register number
// rs1 - first source register number
// rs2 - second source register number
// funct
// xd - is the destination register being used?
// xs1 - is the first source register being used?
// xs2 - is the second source register being used?
// rs1 - the value of source register 1
// rs2 - the value of source register 2
...

}

The opcodes parameter for LazyRoCC is the set of custom opcodes that will map to this accelerator. More on this
in the next subsection.

The LazyRoCC class contains two TLOutputNode instances, atlNode and tlNode. The former connects into a
tile-local arbiter along with the backside of the L1 instruction cache. The latter connects directly to the L1-L2 crossbar.
The corresponding Tilelink ports in the module implementation’s IO bundle are atl and tl, respectively.

The other interfaces available to the accelerator are mem, which provides access to the L1 cache; ptw which provides
access to the page-table walker; the busy signal, which indicates when the accelerator is still handling an instruction;
and the interrupt signal, which can be used to interrupt the CPU.

Look at the examples in generators/rocket-chip/src/main/scala/tile/LazyRocc.scala for de-
tailed information on the different IOs.

Adding RoCC accelerator to Config

RoCC accelerators can be added to a core by overriding the BuildRoCC parameter in the configuration. This takes a
sequence of functions producing LazyRoCC objects, one for each accelerator you wish to add.

For instance, if we wanted to add the previously defined accelerator and route custom0 and custom1 instructions to it,
we could do the following.

class WithCustomAccelerator extends Config((site, here, up) => {
case BuildRoCC => Seq((p: Parameters) => LazyModule(
new CustomAccelerator(OpcodeSet.custom0 | OpcodeSet.custom1)(p)))

})

class CustomAcceleratorConfig extends Config(
new WithCustomAccelerator ++
new RocketConfig)

To add RoCC instructions in your program, use the RoCC C macros provided in tests/rocc.h. You can find
examples in the files tests/accum.c and charcount.c.
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MMIO Peripherals

The easiest way to create a MMIO peripheral is to use the TLRegisterRouter or AXI4RegisterRouter
widgets, which abstracts away the details of handling the interconnect protocols and provides a convenient interface
for specifying memory-mapped registers. Since Chipyard and Rocket Chip SoCs primarily use Tilelink as the on-
chip interconnect protocol, this section will primarily focus on designing Tilelink-based peripherals. However, see
generators/example/src/main/scala/GCD.scala for how an example AXI4 based peripheral is defined
and connected to the Tilelink graph through converters.

To create a RegisterRouter-based peripheral, you will need to specify a parameter case class for the configuration
settings, a bundle trait with the extra top-level ports, and a module implementation containing the actual RTL.

For this example, we will show how to connect a MMIO peripheral which computes the GCD. The full code can be
found in generators/example/src/main/scala/GCD.scala.

In this case we use a submodule GCDMMIOChiselModule to actually perform the GCD. The GCDModule class
only creates the registers and hooks them up using regmap.

class GCDMMIOChiselModule(val w: Int) extends Module
with HasGCDIO

{
val s_idle :: s_run :: s_done :: Nil = Enum(3)

val state = RegInit(s_idle)
val tmp = Reg(UInt(w.W))
val gcd = Reg(UInt(w.W))

io.input_ready := state === s_idle
io.output_valid := state === s_done
io.gcd := gcd

when (state === s_idle && io.input_valid) {
state := s_run

} .elsewhen (state === s_run && tmp === 0.U) {
state := s_done

} .elsewhen (state === s_done && io.output_ready) {
state := s_idle

}

when (state === s_idle && io.input_valid) {
gcd := io.x
tmp := io.y

} .elsewhen (state === s_run) {
when (gcd > tmp) {

gcd := gcd - tmp
} .otherwise {

tmp := tmp - gcd
}

}

io.busy := state =/= s_idle
}

trait GCDModule extends HasRegMap {
val io: GCDTopIO

implicit val p: Parameters
def params: GCDParams

(continues on next page)

1.6. Table of Contents 41



Chipyard Documentation, Release 0.1

(continued from previous page)

val clock: Clock
val reset: Reset

// How many clock cycles in a PWM cycle?
val x = Reg(UInt(params.width.W))
val y = Wire(new DecoupledIO(UInt(params.width.W)))
val gcd = Wire(new DecoupledIO(UInt(params.width.W)))
val status = Wire(UInt(2.W))

val impl = if (params.useBlackBox) {
Module(new GCDMMIOBlackBox(params.width))

} else {
Module(new GCDMMIOChiselModule(params.width))

}

impl.io.clock := clock
impl.io.reset := reset.asBool

impl.io.x := x
impl.io.y := y.bits
impl.io.input_valid := y.valid
y.ready := impl.io.input_ready

gcd.bits := impl.io.gcd
gcd.valid := impl.io.output_valid
impl.io.output_ready := gcd.ready

status := Cat(impl.io.input_ready, impl.io.output_ready)
io.gcd_busy := impl.io.busy

regmap(
0x00 -> Seq(
RegField.r(2, status)), // a read-only register capturing current status

0x04 -> Seq(
RegField.w(params.width, x)), // a plain, write-only register

0x08 -> Seq(
RegField.w(params.width, y)), // write-only, y.valid is set on write

0x0C -> Seq(
RegField.r(params.width, gcd))) // read-only, gcd.ready is set on read

}

Advanced Features of RegField Entries

RegField exposes polymorphic r and w methods that allow read- and write-only memory-mapped registers to be
interfaced to hardware in multiple ways.

• RegField.r(2, status) is used to create a 2-bit, read-only register that captures the current value of the
status signal when read.

• RegField.r(params.width, gcd) “connects” the decoupled handshaking interface gcd to a read-only
memory-mapped register. When this register is read via MMIO, the ready signal is asserted. This is in turn
connected to output_ready on the GCD module through the glue logic.

• RegField.w(params.width, x) exposes a plain register via MMIO, but makes it write-only.
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• RegField.w(params.width, y) associates the decoupled interface signal y with a write-only memory-
mapped register, causing y.valid to be asserted when the register is written.

Since the ready/valid signals of y are connected to the input_ready and input_valid signals of the GCD
module, respectively, this register map and glue logic has the effect of triggering the GCD algorithm when y is
written. Therefore, the algorithm is set up by first writing x and then performing a triggering write to y. Polling can
be used for status checks.

Connecting by TileLink

Once you have these classes, you can construct the final peripheral by extending the TLRegisterRouter and
passing the proper arguments. The first set of arguments determines where the register router will be placed in the
global address map and what information will be put in its device tree entry. The second set of arguments is the IO
bundle constructor, which we create by extending TLRegBundle with our bundle trait. The final set of arguments is
the module constructor, which we create by extends TLRegModule with our module trait. Notice how we can create
an analogous AXI4 version of our peripheral.

class GCDTL(params: GCDParams, beatBytes: Int)(implicit p: Parameters)
extends TLRegisterRouter(
params.address, "gcd", Seq("ucbbar,gcd"),
beatBytes = beatBytes)(
new TLRegBundle(params, _) with GCDTopIO)(
new TLRegModule(params, _, _) with GCDModule)

class GCDAXI4(params: GCDParams, beatBytes: Int)(implicit p: Parameters)
extends AXI4RegisterRouter(
params.address,
beatBytes=beatBytes)(

new AXI4RegBundle(params, _) with GCDTopIO)(
new AXI4RegModule(params, _, _) with GCDModule)

Top-level Traits

After creating the module, we need to hook it up to our SoC. Rocket Chip accomplishes this using the cake pat-
tern. This basically involves placing code inside traits. In the Rocket Chip cake, there are two kinds of traits: a
LazyModule trait and a module implementation trait.

The LazyModule trait runs setup code that must execute before all the hardware gets elaborated. For a simple
memory-mapped peripheral, this just involves connecting the peripheral’s TileLink node to the MMIO crossbar.

trait CanHavePeripheryGCD { this: BaseSubsystem =>
private val portName = "gcd"

// Only build if we are using the TL (nonAXI4) version
val gcd = p(GCDKey) match {
case Some(params) => {

if (params.useAXI4) {
val gcd = LazyModule(new GCDAXI4(params, pbus.beatBytes)(p))
pbus.toSlave(Some(portName)) {
gcd.node :=
AXI4Buffer () :=
TLToAXI4 () :=
// toVariableWidthSlave doesn't use holdFirstDeny, which TLToAXI4() needsx
TLFragmenter(pbus.beatBytes, pbus.blockBytes, holdFirstDeny = true)

(continues on next page)
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}
Some(gcd)

} else {
val gcd = LazyModule(new GCDTL(params, pbus.beatBytes)(p))
pbus.toVariableWidthSlave(Some(portName)) { gcd.node }
Some(gcd)

}
}
case None => None

}
}

Note that the GCDTL class we created from the register router is itself a LazyModule. Register routers have a
TileLink node simply named “node”, which we can hook up to the Rocket Chip bus. This will automatically add
address map and device tree entries for the peripheral. Also observe how we have to place additional AXI4 buffers
and converters for the AXI4 version of this peripheral.

For peripherals which instantiate a concrete module, or which need to be connected to concrete IOs or wires, a
matching concrete trait is necessary. We will make our GCD example output a gcd_busy signal as a top-level
port to demonstrate. In the concrete module implementation trait, we instantiate the top level IO (a concrete object)
and wire it to the IO of our lazy module.

trait CanHavePeripheryGCDModuleImp extends LazyModuleImp {
val outer: CanHavePeripheryGCD
val gcd_busy = outer.gcd match {
case Some(gcd) => {
val busy = IO(Output(Bool()))
busy := gcd.module.io.gcd_busy
Some(busy)

}
case None => None

}
}

Constructing the Top and Config

Now we want to mix our traits into the system as a whole. This code is from generators/example/src/main/
scala/Top.scala.

class Top(implicit p: Parameters) extends System
with CanHavePeripheryUARTAdapter // Enables optionally adding the UART print adapter
with HasPeripheryUART // Enables optionally adding the sifive UART
with HasPeripheryGPIO // Enables optionally adding the sifive GPIOs
with CanHavePeripheryBlockDevice // Enables optionally adding the block device
with CanHavePeripheryInitZero // Enables optionally adding the initzero example

→˓widget
with CanHavePeripheryGCD // Enables optionally adding the GCD example widget
with CanHavePeripherySerial // Enables optionally adding the TSI serial-adapter and

→˓port
with CanHavePeripheryIceNIC // Enables optionally adding the IceNIC for FireSim
with CanHaveBackingScratchpad // Enables optionally adding a backing scratchpad

{
override lazy val module = new TopModule(this)

}

(continues on next page)
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class TopModule[+L <: Top](l: L) extends SystemModule(l)
with HasPeripheryGPIOModuleImp
with HasPeripheryUARTModuleImp
with CanHavePeripheryBlockDeviceModuleImp
with CanHavePeripheryGCDModuleImp
with CanHavePeripherySerialModuleImp
with CanHavePeripheryIceNICModuleImp
with CanHavePeripheryUARTAdapterModuleImp
with DontTouch

Just as we need separate traits for LazyModule and module implementation, we need two classes to build the system.
The Top class contains the set of traits which parameterize and define the Top. Typically these traits will optionally
add IOs or peripherals to the Top. The Top class includes the pre-elaboration code and also a lazy val to produce
the module implementation (hence LazyModule). The TopModule class is the actual RTL that gets synthesized.

And finally, we create a configuration class in generators/example/src/main/scala/Configs.scala
that uses the WithGCD mixin defined earlier.

/**
* Mixin to add a GCD peripheral

*/
class WithGCD(useAXI4: Boolean, useBlackBox: Boolean) extends Config((site, here, up)
→˓=> {
case GCDKey => Some(GCDParams(useAXI4 = useAXI4, useBlackBox = useBlackBox))

})

class GCDTLRocketConfig extends Config(
new WithTSI ++
new WithNoGPIO ++
new WithUART ++
new WithGCD(useAXI4=false, useBlackBox=false) ++ // Use GCD Chisel,

→˓connect Tilelink
new WithBootROM ++
new freechips.rocketchip.subsystem.WithNoMMIOPort ++
new freechips.rocketchip.subsystem.WithNoSlavePort ++
new freechips.rocketchip.subsystem.WithInclusiveCache ++
new freechips.rocketchip.subsystem.WithNBigCores(1) ++
new freechips.rocketchip.system.BaseConfig)

Testing

Now we can test that the GCD is working. The test program is in tests/gcd.c.

#include "mmio.h"

#define GCD_STATUS 0x2000
#define GCD_X 0x2004
#define GCD_Y 0x2008
#define GCD_GCD 0x200C

unsigned int gcd_ref(unsigned int x, unsigned int y) {
while (y != 0) {
if (x > y)

(continues on next page)
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x = x - y;
else

y = y - x;
}
return x;

}

// DOC include start: GCD test
int main(void)
{

uint32_t result, ref, x = 20, y = 15;

// wait for peripheral to be ready
while ((reg_read8(GCD_STATUS) & 0x2) == 0) ;

reg_write32(GCD_X, x);
reg_write32(GCD_Y, y);

// wait for peripheral to complete
while ((reg_read8(GCD_STATUS) & 0x1) == 0) ;

result = reg_read32(GCD_GCD);
ref = gcd_ref(x, y);

if (result != ref) {
printf("Hardware result %d does not match reference value %d\n", result, ref);
return 1;

}
return 0;

}
// DOC include end: GCD test

This just writes out to the registers we defined earlier. The base of the module’s MMIO region is at 0x2000 by default.
This will be printed out in the address map portion when you generate the Verilog code. You can also see how this
changes the emitted .json addressmap files in generated-src.

Compiling this program with make produces a gcd.riscv executable.

Now with all of that done, we can go ahead and run our simulation.

cd sims/verilator
make CONFIG=GCDTLRocketConfig BINARY=../../tests/gcd.riscv run-binary

Keys, Traits, and Configs

You have probably seen snippets of Chisel referencing Keys, Traits, and Configs by this point. This section aims to
elucidate the interactions between these Chisel/Scala components, and provide best practices for how these should be
used to create a parameterized design and configure it.

We will continue to use the GCD example.
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Keys

Keys specify some parameter which controls some custom widget. Keys should typically be implemented as Option
types, with a default value of None that means no change in the system. In other words, the default behavior when
the user does not explicitly set the key should be a no-op.

Keys should be defined and documented in sub-projects, since they generally deal with some specific block, and not
system-level integration. (We make an exception for the example GCD widget).

case object GCDKey extends Field[Option[GCDParams]](None)

The object within a key is typically a case class XXXParams, which defines a set of parameters which some
block accepts. For example, the GCD widget’s GCDParams parameterizes its address, operand widths, whether the
widget should be connected by Tilelink or AXI4, and whether the widget should use the blackbox-Verilog implemen-
tation, or the Chisel implementation.

case class GCDParams(
address: BigInt = 0x2000,
width: Int = 32,
useAXI4: Boolean = false,
useBlackBox: Boolean = true)

Accessing the value stored in the key is easy in Chisel, as long as the implicit p: Parameters object is
being passed through to the relevant module. For example, p(GCDKey).get.address returns the address field of
GCDParams. Note this only works if GCDKey was not set to None, so your Chisel should check for that case!

Traits

Typically, most custom blocks will need to modify the behavior of some pre-existing block. For example, the GCD
widget needs the Top module to instantiate and connect the widget via Tilelink, generate a top-level gcd_busy port,
and connect that to the module as well. Traits let us do this without modifying the existing code for the Top, and
enables compartmentalization of code for different custom blocks.

Top-level traits specify that the Top has been parameterized to read some custom Key and optionally instantiate and
connect a widget defined by that Key. Traits should not mandate the instantiation of custom logic. In other words,
traits should be written with CanHave semantics, where the default behavior when the Key is unset is a no-op.

Top-level traits should be defined and documented in subprojects, alongside their corresponding Keys. The traits
should then be added to the Top being used by Chipyard.

Below we see the traits for the GCD example. The Lazy trait connects the GCD module to the Diplomacy graph, while
the Implementation trait causes the Top to instantiate an additional port and concretely connect it to the GCD module.

trait CanHavePeripheryGCD { this: BaseSubsystem =>
private val portName = "gcd"

// Only build if we are using the TL (nonAXI4) version
val gcd = p(GCDKey) match {
case Some(params) => {

if (params.useAXI4) {
val gcd = LazyModule(new GCDAXI4(params, pbus.beatBytes)(p))
pbus.toSlave(Some(portName)) {
gcd.node :=
AXI4Buffer () :=
TLToAXI4 () :=
// toVariableWidthSlave doesn't use holdFirstDeny, which TLToAXI4() needsx

(continues on next page)
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TLFragmenter(pbus.beatBytes, pbus.blockBytes, holdFirstDeny = true)
}
Some(gcd)

} else {
val gcd = LazyModule(new GCDTL(params, pbus.beatBytes)(p))
pbus.toVariableWidthSlave(Some(portName)) { gcd.node }
Some(gcd)

}
}
case None => None

}
}
// DOC include end: GCD lazy trait

// DOC include start: GCD imp trait
trait CanHavePeripheryGCDModuleImp extends LazyModuleImp {
val outer: CanHavePeripheryGCD
val gcd_busy = outer.gcd match {
case Some(gcd) => {
val busy = IO(Output(Bool()))
busy := gcd.module.io.gcd_busy
Some(busy)

}
case None => None

}
}

These traits are added to the default Top in Chipyard.

class Top(implicit p: Parameters) extends System
with CanHavePeripheryUARTAdapter // Enables optionally adding the UART print adapter
with HasPeripheryUART // Enables optionally adding the sifive UART
with HasPeripheryGPIO // Enables optionally adding the sifive GPIOs
with CanHavePeripheryBlockDevice // Enables optionally adding the block device
with CanHavePeripheryInitZero // Enables optionally adding the initzero example

→˓widget
with CanHavePeripheryGCD // Enables optionally adding the GCD example widget
with CanHavePeripherySerial // Enables optionally adding the TSI serial-adapter and

→˓port
with CanHavePeripheryIceNIC // Enables optionally adding the IceNIC for FireSim
with CanHaveBackingScratchpad // Enables optionally adding a backing scratchpad

{
override lazy val module = new TopModule(this)

}

class TopModule[+L <: Top](l: L) extends SystemModule(l)
with HasPeripheryGPIOModuleImp
with HasPeripheryUARTModuleImp
with CanHavePeripheryBlockDeviceModuleImp
with CanHavePeripheryGCDModuleImp
with CanHavePeripherySerialModuleImp
with CanHavePeripheryIceNICModuleImp
with CanHavePeripheryUARTAdapterModuleImp
with DontTouch
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Mixins

Mixins set the keys to a non-default value. Together, the collection of Mixins which define a configuration generate
the values for all the keys used by the generator.

For example, the WithGCDMixin is parameterized by the type of GCD widget you want to instantiate. When this
mixin is added to a config, the GCDKey is set to a instance of GCDParams, informing the previously mentioned traits
to instantiate and connect the GCD widget appropriately.

/**
* Mixin to add a GCD peripheral

*/
class WithGCD(useAXI4: Boolean, useBlackBox: Boolean) extends Config((site, here, up)
→˓=> {
case GCDKey => Some(GCDParams(useAXI4 = useAXI4, useBlackBox = useBlackBox))

})

We can use this mixin when composing our configs.

class GCDTLRocketConfig extends Config(
new WithTSI ++
new WithNoGPIO ++
new WithUART ++
new WithGCD(useAXI4=false, useBlackBox=false) ++ // Use GCD Chisel,

→˓connect Tilelink
new WithBootROM ++
new freechips.rocketchip.subsystem.WithNoMMIOPort ++
new freechips.rocketchip.subsystem.WithNoSlavePort ++
new freechips.rocketchip.subsystem.WithInclusiveCache ++
new freechips.rocketchip.subsystem.WithNBigCores(1) ++
new freechips.rocketchip.system.BaseConfig)

BuildTop

The BuildTop key is special, because sometimes, we need to instantiate TestHarness modules to interface with
a custom widget. The BuildTop key provides a function which can call some method of the Top to instantiate these
TestHarness modules. Since the BuildTop key is called from the TestHarness, these modules will appear
in the TestHarness. The config system also lets the BuildTop key look recursively into previous definitions of
itself. This enables composability of the Top configurations.

For example, conside a config that contains the mixins WithGPIO ++ WithTSI. We need to instantiate the TSI
serial adapter, and connect it to the success signal of our TestHarness. We also need to instantiate the GPIO
pins, and tie their inputs to 0 in the TestHarness, since we currently cannot drive the GPIOs in simulation.

/**
* Mixin to add an offchip TSI link (used for backing memory)

*/
class WithTSI extends Config((site, here, up) => {

case SerialKey => true
case BuildTop => (clock: Clock, reset: Bool, p: Parameters, success: Bool) => {
val top = up(BuildTop, site)(clock, reset, p, success)
success := top.connectSimSerial()
top

}
})
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/**
* Mixin to add GPIOs and tie them off outside the DUT

*/
class WithGPIO extends Config((site, here, up) => {

case PeripheryGPIOKey => Seq(
GPIOParams(address = 0x10012000, width = 4, includeIOF = false))

case BuildTop => (clock: Clock, reset: Bool, p: Parameters, success: Bool) => {
val top = up(BuildTop, site)(clock, reset, p, success)
// TODO: Currently FIRRTL will error if the GPIO input
// pins are unconnected, so tie them to 0.
// In future IO cell blackboxes will replace this with
// more correct functionality
for (gpio <- top.gpio) {
for (pin <- gpio.pins) {
pin.i.ival := false.B

}
}
top

}
})

When WithGPIO ++ WithTSI is evaluated right to left, the call to up(BuildTop, site) in WithGPIO will
reference the function defined in the BuildTop key of WithTSI. Thus, at elaboration time, when the BuildTop
function is called by the TestHarness, first the BuildTop function in WithTSI will be evaluated. This connects
the success signal of the TestHarness to the SerialAdapter enabled by WithTSI. Then, the rest of the
code in the BuildTop function of WithGPIO will execute, tieing off the top-level GPIO input pins. Thus the
evaluation of the BuildTop functions in a completed config is “right-to-left”, matching how the evaluation of the
mixins at compile-time is also “right-to-left”.

Warning: In some cases, the ordering and duplication of mixins which extend BuildTop will have unintended
consequences. For example, WithTSI ++ WithTSI will attempt to generate and connect two SimSerial
widgets in the TestHarness, which will likely break the simulation. In general, you should avoid attaching
multiple mixins which interface to the same top-level ports.

Note: Readers who want more information on the configuration system may be interested in reading Context-
Dependent-Environments.

Adding a DMA Device

DMA devices are Tilelink widgets which act as masters. In other words, DMA devices can send their own read and
write requests to the chip’s memory system.

For IO devices or accelerators (like a disk or network driver), instead of having the CPU poll data from the device, we
may want to have the device write directly to the coherent memory system instead. For example, here is a device that
writes zeros to the memory at a configured address.

package example

import chisel3._
import chisel3.util._
import freechips.rocketchip.subsystem.{BaseSubsystem, CacheBlockBytes}

(continues on next page)
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import freechips.rocketchip.config.{Parameters, Field}
import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp, IdRange}
import testchipip.TLHelper

case class InitZeroConfig(base: BigInt, size: BigInt)
case object InitZeroKey extends Field[Option[InitZeroConfig]](None)

class InitZero(implicit p: Parameters) extends LazyModule {
val node = TLHelper.makeClientNode(
name = "init-zero", sourceId = IdRange(0, 1))

lazy val module = new InitZeroModuleImp(this)
}

class InitZeroModuleImp(outer: InitZero) extends LazyModuleImp(outer) {
val config = p(InitZeroKey).get

val (mem, edge) = outer.node.out(0)
val addrBits = edge.bundle.addressBits
val blockBytes = p(CacheBlockBytes)

require(config.size % blockBytes == 0)

val s_init :: s_write :: s_resp :: s_done :: Nil = Enum(4)
val state = RegInit(s_init)

val addr = Reg(UInt(addrBits.W))
val bytesLeft = Reg(UInt(log2Ceil(config.size+1).W))

mem.a.valid := state === s_write
mem.a.bits := edge.Put(
fromSource = 0.U,
toAddress = addr,
lgSize = log2Ceil(blockBytes).U,
data = 0.U)._2

mem.d.ready := state === s_resp

when (state === s_init) {
addr := config.base.U
bytesLeft := config.size.U
state := s_write

}

when (edge.done(mem.a)) {
addr := addr + blockBytes.U
bytesLeft := bytesLeft - blockBytes.U
state := s_resp

}

when (mem.d.fire()) {
state := Mux(bytesLeft === 0.U, s_done, s_write)

}
}

trait CanHavePeripheryInitZero { this: BaseSubsystem =>
implicit val p: Parameters

(continues on next page)
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p(InitZeroKey) .map { k =>
val initZero = LazyModule(new InitZero()(p))
fbus.fromPort(Some("init-zero"))() := initZero.node

}
}

class Top(implicit p: Parameters) extends System
with CanHavePeripheryUARTAdapter // Enables optionally adding the UART print adapter
with HasPeripheryUART // Enables optionally adding the sifive UART
with HasPeripheryGPIO // Enables optionally adding the sifive GPIOs
with CanHavePeripheryBlockDevice // Enables optionally adding the block device
with CanHavePeripheryInitZero // Enables optionally adding the initzero example

→˓widget
with CanHavePeripheryGCD // Enables optionally adding the GCD example widget
with CanHavePeripherySerial // Enables optionally adding the TSI serial-adapter and

→˓port
with CanHavePeripheryIceNIC // Enables optionally adding the IceNIC for FireSim
with CanHaveBackingScratchpad // Enables optionally adding a backing scratchpad

{
override lazy val module = new TopModule(this)

}

class TopModule[+L <: Top](l: L) extends SystemModule(l)
with HasPeripheryGPIOModuleImp
with HasPeripheryUARTModuleImp
with CanHavePeripheryBlockDeviceModuleImp
with CanHavePeripheryGCDModuleImp
with CanHavePeripherySerialModuleImp
with CanHavePeripheryIceNICModuleImp
with CanHavePeripheryUARTAdapterModuleImp
with DontTouch

We use TLHelper.makeClientNode to create a TileLink client node for us. We then connect the client node to
the memory system through the front bus (fbus). For more info on creating TileLink client nodes, take a look at Client
Node.

Once we’ve created our top-level module including the DMA widget, we can create a configuration for it as we did
before.

/**
* Mixin to add a peripheral that clears memory

*/
class WithInitZero(base: BigInt, size: BigInt) extends Config((site, here, up) => {

case InitZeroKey => Some(InitZeroConfig(base, size))
})

class InitZeroRocketConfig extends Config(
new WithInitZero(0x88000000L, 0x1000L) ++ // add InitZero
new WithNoGPIO ++
new WithTSI ++
new WithBootROM ++
new WithUART ++
new freechips.rocketchip.subsystem.WithNoMMIOPort ++
new freechips.rocketchip.subsystem.WithNoSlavePort ++
new freechips.rocketchip.subsystem.WithInclusiveCache ++
new freechips.rocketchip.subsystem.WithNBigCores(1) ++

(continues on next page)
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new freechips.rocketchip.system.BaseConfig)

Incorporating Verilog Blocks

Working with existing Verilog IP is an integral part of many chip design flows. Fortunately, both Chisel and Chipyard
provide extensive support for Verilog integration.

Here, we will examine the process of incorporating an MMIO peripheral that uses a Verilog implementation of Greatest
Common Denominator (GCD) algorithm. There are a few steps to adding a Verilog peripheral:

• Adding a Verilog resource file to the project

• Defining a Chisel BlackBox representing the Verilog module

• Instantiating the BlackBox and interfacing RegField entries

• Setting up a chip Top and Config that use the peripheral

Adding a Verilog Blackbox Resource File

As before, it is possible to incorporate peripherals as part of your own generator project. However, Verilog resource
files must go in a different directory from Chisel (Scala) sources.

generators/yourproject/
build.sbt
src/main/

scala/
resources/

vsrc/
YourFile.v

In addition to the steps outlined in the previous section on adding a project to the build.sbt at the top level, it is
also necessary to add any projects that contain Verilog IP as dependencies to the tapeout project. This ensures that
the Verilog sources are visible to the downstream FIRRTL passes that provide utilities for integrating Verilog files into
the build process, which are part of the tapeout package in barstools/tapeout.

lazy val tapeout = conditionalDependsOn(project in file("./tools/barstools/tapeout/"))
.dependsOn(chisel_testers, example, yourproject)
.settings(commonSettings)

For this concrete GCD example, we will be using a GCDMMIOBlackBox Verilog module that is defined in the
example project. The Scala and Verilog sources follow the prescribed directory layout.

generators/example/
build.sbt
src/main/

scala/
GCD.scala

resources/
vsrc/

GCDMMIOBlackBox.v
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Defining a Chisel BlackBox

A Chisel BlackBox module provides a way of instantiating a module defined by an external Verilog source. The
definition of the blackbox includes several aspects that allow it to be translated to an instance of the Verilog module:

• An io field: a bundle with fields corresponding to the portlist of the Verilog module.

• A constructor parameter that takes a Map from Verilog parameter name to elaborated value

• One or more resources added to indicate Verilog source dependencies

Of particular interest is the fact that parameterized Verilog modules can be passed the full space of possible parameter
values. These values may depend on elaboration-time values in the Chisel generator, as the bitwidth of the GCD
calculation does in this example.

Verilog GCD port list and parameters

module GCDMMIOBlackBox
#(parameter WIDTH)
(
input clock,
input reset,
output input_ready,
input input_valid,
input [WIDTH-1:0] x,
input [WIDTH-1:0] y,
input output_ready,
output output_valid,
output reg [WIDTH-1:0] gcd,
output busy
);

Chisel BlackBox Definition

class GCDMMIOBlackBox(val w: Int) extends BlackBox(Map("WIDTH" -> IntParam(w))) with
→˓HasBlackBoxResource
with HasGCDIO

{
addResource("/vsrc/GCDMMIOBlackBox.v")

}

Instantiating the BlackBox and Defining MMIO

Next, we must instantiate the blackbox. In order to take advantage of diplomatic memory mapping on the sys-
tem bus, we still have to integrate the peripheral at the Chisel level by mixing peripheral-specific traits into a
TLRegisterRouter. The params member and HasRegMap base trait should look familiar from the previous
memory-mapped GCD device example.

trait GCDModule extends HasRegMap {
val io: GCDTopIO

implicit val p: Parameters
def params: GCDParams
val clock: Clock
val reset: Reset

(continues on next page)
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// How many clock cycles in a PWM cycle?
val x = Reg(UInt(params.width.W))
val y = Wire(new DecoupledIO(UInt(params.width.W)))
val gcd = Wire(new DecoupledIO(UInt(params.width.W)))
val status = Wire(UInt(2.W))

val impl = if (params.useBlackBox) {
Module(new GCDMMIOBlackBox(params.width))

} else {
Module(new GCDMMIOChiselModule(params.width))

}

impl.io.clock := clock
impl.io.reset := reset.asBool

impl.io.x := x
impl.io.y := y.bits
impl.io.input_valid := y.valid
y.ready := impl.io.input_ready

gcd.bits := impl.io.gcd
gcd.valid := impl.io.output_valid
impl.io.output_ready := gcd.ready

status := Cat(impl.io.input_ready, impl.io.output_ready)
io.gcd_busy := impl.io.busy

regmap(
0x00 -> Seq(
RegField.r(2, status)), // a read-only register capturing current status

0x04 -> Seq(
RegField.w(params.width, x)), // a plain, write-only register

0x08 -> Seq(
RegField.w(params.width, y)), // write-only, y.valid is set on write

0x0C -> Seq(
RegField.r(params.width, gcd))) // read-only, gcd.ready is set on read

}

Defining a Chip with a BlackBox

Since we’ve parameterized the GCD instantiation to choose between the Chisel and the Verilog module, creating a
config is easy.

class GCDAXI4BlackBoxRocketConfig extends Config(
new WithTSI ++
new WithUART ++
new WithNoGPIO ++
new WithGCD(useAXI4=true, useBlackBox=true) ++ // Use GCD blackboxed

→˓verilog, connect by AXI4->Tilelink
new WithBootROM ++
new freechips.rocketchip.subsystem.WithNoMMIOPort ++
new freechips.rocketchip.subsystem.WithNoSlavePort ++
new freechips.rocketchip.subsystem.WithInclusiveCache ++
new freechips.rocketchip.subsystem.WithNBigCores(1) ++
new freechips.rocketchip.system.BaseConfig)
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You can play with the parameterization of the mixin to choose a TL/AXI4, BlackBox/Chisel version of the GCD.

Software Testing

The GCD module has a more complex interface, so polling is used to check the status of the device before each
triggering read or write.

int main(void)
{

uint32_t result, ref, x = 20, y = 15;

// wait for peripheral to be ready
while ((reg_read8(GCD_STATUS) & 0x2) == 0) ;

reg_write32(GCD_X, x);
reg_write32(GCD_Y, y);

// wait for peripheral to complete
while ((reg_read8(GCD_STATUS) & 0x1) == 0) ;

result = reg_read32(GCD_GCD);
ref = gcd_ref(x, y);

if (result != ref) {
printf("Hardware result %d does not match reference value %d\n", result, ref);
return 1;

}
return 0;

}

Support for Verilog Within Chipyard Tool Flows

There are important differences in how Verilog blackboxes are treated by various flows within the Chipyard framework.
Some flows within Chipyard rely on FIRRTL in order to provide robust, non-invasive transformations of source code.
Since Verilog blackboxes remain blackboxes in FIRRTL, their ability to be processed by FIRRTL transforms is limited,
and some advanced features of Chipyard may provide weaker support for blackboxes. Note that the remainder of
the design (the “non-Verilog” part of the design) may still generally be transformed or augmented by any Chipyard
FIRRTL transform.

• Verilog blackboxes are fully supported for generating tapeout-ready RTL

• HAMMER workflows offer robust support for integrating Verilog blackboxes

• FireSim relies on FIRRTL transformations to generate a decoupled FPGA simulator. Therefore, support for
Verilog blackboxes in FireSim is currently limited but rapidly evolving. Stay tuned!

• Custom FIRRTL transformations and analyses may sometimes be able to handle blackbox Verilog, depending
on the mechanism of the particular transform

As mentioned earlier in this section, BlackBox resource files must be integrated into the build process, so any project
providing BlackBox resources must be made visible to the tapeout project in build.sbt

Memory Hierarchy
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The L1 Caches

Each CPU tile has an L1 instruction cache and L1 data cache. The size and associativity of these caches can be
configured. The default RocketConfig uses 16 KiB, 4-way set-associative instruction and data caches. However,
if you use the NMedCores or NSmallCores configurations, you can configure 4 KiB direct-mapped caches for L1I
and L1D.

class SmallRocketConfig extends Config(
new WithTSI ++
new WithNoGPIO ++
new WithBootROM ++
new WithUART ++
new freechips.rocketchip.subsystem.WithNoMMIOPort ++
new freechips.rocketchip.subsystem.WithNoSlavePort ++
new freechips.rocketchip.subsystem.WithNSmallCores(1) ++ // small rocket cores
new freechips.rocketchip.system.BaseConfig)

class MediumRocketConfig extends Config(
new WithTSI ++
new WithNoGPIO ++
new WithBootROM ++
new WithUART ++
new freechips.rocketchip.subsystem.WithNoMMIOPort ++
new freechips.rocketchip.subsystem.WithNoSlavePort ++
new freechips.rocketchip.subsystem.WithNMedCores(1) ++ // medium rocket cores
new freechips.rocketchip.system.BaseConfig)

If you only want to change the size or associativity, there are configuration mixins for those too.

import freechips.rocketchip.subsystem.{WithL1ICacheSets, WithL1DCacheSets,
→˓WithL1ICacheWays, WithL1DCacheWays}

class MyL1RocketConfig extends Config(
new WithTSI ++
new WithNoGPIO ++
new WithBootROM ++
new WithUART ++
new freechips.rocketchip.subsystem.WithNoMMIOPort ++
new freechips.rocketchip.subsystem.WithNoSlavePort ++
new WithL1ICacheSets(128) ++ // change rocket I$
new WithL1ICacheWays(2) ++ // change rocket I$
new WithL1DCacheSets(128) ++ // change rocket D$
new WithL1DCacheWays(2) ++ // change rocket D$
new freechips.rocketchip.subsystem.WithNSmallCores(1) ++
new freechips.rocketchip.system.BaseConfig)

You can also configure the L1 data cache as an data scratchpad instead. However, there are some limitations on this.
If you are using a data scratchpad, you can only use a single core and you cannot give the design an external DRAM.
Note that these configurations fully remove the L2 cache and mbus.

class SmallRocketConfigNoL2 extends Config(
new WithTSI ++
new WithNoGPIO ++
new WithBootROM ++
new WithUART ++
new freechips.rocketchip.subsystem.WithNoMMIOPort ++
new freechips.rocketchip.subsystem.WithNoSlavePort ++

(continues on next page)
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new freechips.rocketchip.subsystem.WithNSmallCores(1) ++
new freechips.rocketchip.system.BaseConfig)

class ScratchpadRocketConfig extends Config(
new freechips.rocketchip.subsystem.WithNoMemPort ++
new freechips.rocketchip.subsystem.WithNMemoryChannels(0) ++
new freechips.rocketchip.subsystem.WithNBanks(0) ++
new freechips.rocketchip.subsystem.WithScratchpadsOnly ++
new SmallRocketConfigNoL2)

This configuration fully removes the L2 cache and memory bus by setting the number of channels and number of
banks to 0.

The SiFive L2 Cache

The default RocketConfig provided in the Chipyard example project uses SiFive’s InclusiveCache generator to produce
a shared L2 cache. In the default configuration, the L2 uses a single cache bank with 512 KiB capacity and 8-way
set-associativity. However, you can change these parameters to obtain your desired cache configuration. The main
restriction is that the number of ways and the number of banks must be powers of 2.

import freechips.rocketchip.subsystem.WithInclusiveCache

class MyCacheRocketConfig extends Config(
new WithTSI ++
new WithNoGPIO ++
new WithBootROM ++
new WithUART ++
new freechips.rocketchip.subsystem.WithNoMMIOPort ++
new freechips.rocketchip.subsystem.WithNoSlavePort ++
new WithInclusiveCache( // add 1MB, 4-way, 4-bank

→˓cache
capacityKB = 1024,
nWays = 4,
nBanks = 4) ++

new freechips.rocketchip.subsystem.WithNSmallCores(1) ++
new freechips.rocketchip.system.BaseConfig)

The Broadcast Hub

If you do not want to use the L2 cache (say, for a resource-limited embedded design), you can create a configuration
without it. Instead of using the L2 cache, you will instead use RocketChip’s TileLink broadcast hub. To make such
a configuration, you can just copy the definition of RocketConfig but omit the WithInclusiveCache mixin
from the list of included mixims.

class CachelessRocketConfig extends Config(
new WithTSI ++
new WithNoGPIO ++
new WithBootROM ++
new WithUART ++
new freechips.rocketchip.subsystem.WithNoMMIOPort ++
new freechips.rocketchip.subsystem.WithNoSlavePort ++
new freechips.rocketchip.subsystem.WithNBigCores(1) ++
new freechips.rocketchip.system.BaseConfig)
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If you want to reduce the resources used even further, you can configure the Broadcast Hub to use a bufferless design.

import freechips.rocketchip.subsystem.WithBufferlessBroadcastHub

class BufferlessRocketConfig extends Config(
new WithBufferlessBroadcastHub ++
new CachelessRocketConfig)

The Outer Memory System

The L2 coherence agent (either L2 cache or Broadcast Hub) makes requests to an outer memory system consisting of
an AXI4-compatible DRAM controller.

The default configuration uses a single memory channel, but you can configure the system to use multiple channels.
As with the number of L2 banks, the number of DRAM channels is restricted to powers of two.

import freechips.rocketchip.subsystem.WithNMemoryChannels

class DualChannelRocketConfig extends Config(
new WithTSI ++
new WithNoGPIO ++
new WithBootROM ++
new WithUART ++
new freechips.rocketchip.subsystem.WithNoMMIOPort ++
new freechips.rocketchip.subsystem.WithNoSlavePort ++
new WithNMemoryChannels(2) ++ // multi-channel outer mem
new freechips.rocketchip.subsystem.WithNBigCores(1) ++
new freechips.rocketchip.system.BaseConfig)

In VCS and Verilator simulation, the DRAM is simulated using the SimAXIMem module, which simply attaches a
single-cycle SRAM to each memory channel.

If you want a more realistic memory simulation, you can use FireSim, which can simulate the timing of DDR3
controllers. More documentation on FireSim memory models is available in the FireSim docs.

Chipyard Boot Process

This section will describe in detail the process by which a Chipyard-based SoC boots a Linux kernel and the changes
you can make to customize this process.

BootROM and RISC-V Frontend Server

The BootROM contains both the first instructions to run when the SoC is powered on as well as the Device Tree
Binary (dtb) which details the components of the system. The assembly for the BootROM code is located in gen-
erators/testchipip/src/main/resources/testchipip/bootrom/bootrom.S. The BootROM address space starts at 0x10000
(determined by the BootROMParams key in the configuration) and execution starts at address 0x10040 (given by
the linker script and reset vector in the BootROMParams), which is marked by the _hang label in the BootROM
assembly.

The Chisel generator encodes the assembled instructions into the BootROM hardware at elaboration time, so if you
want to change the BootROM code, you will need to run make in the bootrom directory and then regenerate the
Verilog. If you don’t want to overwrite the existing bootrom.S, you can also point the generator to a different
bootrom image by overriding the BootROMParams key in the configuration.
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class WithMyBootROM extends Config((site, here, up) => {
case BootROMParams =>
BootROMParams(contentFileName = "/path/to/your/bootrom.img")

})

The default bootloader simply loops on a wait-for-interrupt (WFI) instruction as the RISC-V frontend-server (FESVR)
loads the actual program. FESVR is a program that runs on the host CPU and can read/write arbitrary parts of the
target system memory using the Tethered Serial Interface (TSI).

FESVR uses TSI to load a baremetal executable or second-stage bootloader into the SoC memory. In Software RTL
Simulation, this will be the binary you pass to the simulator. Once it is finished loading the program, FESVR will
write to the software interrupt register for CPU 0, which will bring CPU 0 out of its WFI loop. Once it receives the
interrupt, CPU 0 will write to the software interrupt registers for the other CPUs in the system and then jump to the
beginning of DRAM to execute the first instruction of the loaded executable. The other CPUs will be woken up by the
first CPU and also jump to the beginning of DRAM.

The executable loaded by FESVR should have memory locations designated as tohost and fromhost. FESVR uses
these memory locations to communicate with the executable once it is running. The executable uses tohost to send
commands to FESVR for things like printing to the console, proxying system calls, and shutting down the SoC. The
fromhost register is used to send back responses for tohost commands and for sending console input.

The Berkeley Boot Loader and RISC-V Linux

For baremetal programs, the story ends here. The loaded executable will run in machine mode until it sends a command
through the tohost register telling the FESVR to power off the SoC.

However, for booting the Linux Kernel, you will need to use a second-stage bootloader called the Berkeley Boot
Loader, or BBL. This program reads the device tree encoded in the boot ROM and transforms it into a format com-
patible with the Linux kernel. It then sets up virtual memory and the interrupt controller, loads the kernel, which is
embedded in the bootloader binary as a payload, and starts executing the kernel in supervisor mode. The bootloader
is also responsible for servicing machine-mode traps from the kernel and proxying them over FESVR.

Once BBL jumps into supervisor mode, the Linux kernel takes over and begins its process. It eventually loads the
init program and runs it in user mode, thus starting userspace execution.

The easiest way to build a BBL image that boots Linux is to use the FireMarshal tool that lives in the firesim-software
repository. Directions on how to use FireMarshal can be found in the FireSim documentation. Using FireMarshal, you
can add custom kernel configurations and userspace software to your workload.

Adding a Firrtl Transform

Similar to how LLVM IR passes can perform transformations and optimizations on software, FIRRTL transforms can
modify Chisel-elaborated RTL. As mentioned in Section FIRRTL, transforms are modifications that happen on the
FIRRTL IR that can modify a circuit. Transforms are a powerful tool to take in the FIRRTL IR that is emitted from
Chisel and run analysis or convert the circuit into a new form.

Where to add transforms

In Chipyard, the FIRRTL compiler is called multiple times to create a “Top” file that contains the DUT and a “Harness”
file containing the test harness, which instantiates the DUT. The “Harness” file does not contain the DUT’s module
definition or any of its submodules. This is done by the tapeout SBT project (located in tools/barstools/
tapeout) which calls GenerateTopAndHarness (a function that wraps the multiple FIRRTL compiler calls and
extra transforms).
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# NOTE: These *_temp intermediate targets will get removed in favor of make 4.3
→˓grouped targets (&: operator)
.INTERMEDIATE: firrtl_temp
$(TOP_TARGETS) $(HARNESS_TARGETS): firrtl_temp

@echo "" > /dev/null

firrtl_temp: $(FIRRTL_FILE) $(ANNO_FILE)
cd $(base_dir) && $(SBT) "project tapeout" "runMain barstools.tapeout.

→˓transforms.GenerateTopAndHarness -o $(TOP_FILE) -tho $(HARNESS_FILE) -i $(FIRRTL_
→˓FILE) --syn-top $(TOP) --harness-top $(VLOG_MODEL) -faf $(ANNO_FILE) -tsaof $(TOP_
→˓ANNO) -tdf $(sim_top_blackboxes) -tsf $(TOP_FIR) -thaof $(HARNESS_ANNO) -hdf $(sim_
→˓harness_blackboxes) -thf $(HARNESS_FIR) $(REPL_SEQ_MEM) $(HARNESS_CONF_FLAGS) -td
→˓$(build_dir)" && touch $(sim_top_blackboxes) $(sim_harness_blackboxes)

If you look inside of the tools/barstools/tapeout/src/main/scala/transforms/Generate.scala file, you can see that FIR-
RTL is invoked twice, once for the “Top” and once for the “Harness”. If you want to add transforms to just modify
the DUT, you can add them to topTransforms. Otherwise, if you want to add transforms to just modify the test
harness, you can add them to harnessTransforms.

For more information on Barstools, please visit the Barstools section.

Examples of transforms

There are multiple examples of transforms that you can apply and are spread across the FIRRTL ecosystem. Within
FIRRTL there is a default set of supported transforms located in https://github.com/freechipsproject/firrtl/tree/master/
src/main/scala/firrtl/transforms. This includes transforms that can flatten modules (Flatten), group modules to-
gether (GroupAndDedup), and more.

Transforms can be standalone or can take annotations as input. Annotations are used to pass information between
FIRRTL transforms. This includes information on what modules to flatten, group, and more. Annotations can be
added to the code by adding them to your Chisel source or by creating a serialized annotation json file and adding
it to the FIRRTL compiler (note: annotating the Chisel source will automatically serialize the annotation as a json
snippet into the build system for you). The recommended way to annotate something is to do it in the Chisel
source, but not all annotation types have Chisel APIs.

The example below shows two ways to annotate the signal using the DontTouchAnnotation (makes sure that a
particular signal is not removed by the “Dead Code Elimination” pass in FIRRTL):

• use the Chisel API/wrapper function called dontTouch that does this automatically for you (more dontTouch
information):

• directly annotate the signal with the annotate function and the DontTouchAnnotation class if there is
no Chisel API for it (note: most FIRRTL annotations have Chisel APIs for them)

class TopModule extends Module {
...
val submod = Module(new Submodule)
...

}

class Submodule extends Module {
...
val some_signal := ...

// MAIN WAY TO USE `dontTouch`
// how to annotate if there is a Chisel API/wrapper

(continues on next page)
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chisel3.dontTouch(some_signal)

// how to annotate WITHOUT a Chisel API/wrapper
annotate(new ChiselAnnotation {

def toFirrtl = DontTouchAnnotation(some_signal.toNamed)
})

...
}

Here is an example of the DontTouchAnnotation when it is serialized:

[
{

"class": "firrtl.transforms.DontTouchAnnotation",
"target": "~TopModule|Submodule>some_signal"

}
]

In this case, the specific syntax depends on the type of annotation and its fields. One of the easier ways to figure out
the serialized syntax is to first try and find a Chisel annotation to add to the code. Then you can look at the collateral
that is generated from the build system, find the *.anno.json, and find the proper syntax for the annotation.

Once yourAnnoFile.json is created then you can add -faf yourAnnoFile.json to the FIRRTL compiler
invocation in common.mk.

# NOTE: These *_temp intermediate targets will get removed in favor of make 4.3
→˓grouped targets (&: operator)
.INTERMEDIATE: firrtl_temp
$(TOP_TARGETS) $(HARNESS_TARGETS): firrtl_temp

@echo "" > /dev/null

firrtl_temp: $(FIRRTL_FILE) $(ANNO_FILE)
cd $(base_dir) && $(SBT) "project tapeout" "runMain barstools.tapeout.

→˓transforms.GenerateTopAndHarness -o $(TOP_FILE) -tho $(HARNESS_FILE) -i $(FIRRTL_
→˓FILE) --syn-top $(TOP) --harness-top $(VLOG_MODEL) -faf $(ANNO_FILE) -tsaof $(TOP_
→˓ANNO) -tdf $(sim_top_blackboxes) -tsf $(TOP_FIR) -thaof $(HARNESS_ANNO) -hdf $(sim_
→˓harness_blackboxes) -thf $(HARNESS_FIR) $(REPL_SEQ_MEM) $(HARNESS_CONF_FLAGS) -td
→˓$(build_dir)" && touch $(sim_top_blackboxes) $(sim_harness_blackboxes)

If you are interested in writing FIRRTL transforms please refer to the FIRRTL documentation located here: https:
//github.com/freechipsproject/firrtl/wiki.

1.6.7 Target Software

Chipyard includes tools for developing target software workloads. The primary tool is FireMarshal, which manages
workload descriptions and generates binaries and disk images to run on your target designs. Workloads can be bare-
metal, or be based on standard Linux distributions. Users can customize every part of the build process, including
providing custom kernels (if needed by the hardware).

FireMarshal can also run your workloads on high-performance functional simulators like Spike and Qemu. Spike
is easily customized and serves as the official RISC-V ISA reference implementation. Qemu is a high-performance
functional simulator that can run nearly as fast as native code, but can be challenging to modify.
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FireMarshal

FireMarshal is a workload generation tool for RISC-V based systems. It currently only supports the FireSim FPGA-
accelerated simulation platform.

Workloads in FireMarshal consist of a series of Jobs that are assigned to logical nodes in the target system. If no
jobs are specified, then the workload is considered uniform and only a single image will be produced for all nodes
in the system. Workloads are described by a json file and a corresponding workload directory and can inherit their
definitions from existing workloads. Typically, workload configurations are kept in workloads/ although you can
use any directory you like. We provide a few basic workloads to start with including buildroot or Fedora-based linux
distributions and bare-metal.

Once you define a workload, the marshal command will produce a corresponding boot-binary and rootfs for each
job in the workload. This binary and rootfs can then be launched on qemu or spike (for functional simulation), or
installed to a platform for running on real RTL (currently only FireSim is automated).

To get started, checkout the full FireMarshal documentation.

The RISC-V ISA Simulator (Spike)

Spike is the golden reference functional RISC-V ISA C++ sofware simulator. It provides full system emulation or
proxied emulation with HTIF/FESVR. It serves as a starting point for running software on a RISC-V target. Here is a
highlight of some of Spikes main features:

• Multiple ISAs: RV32IMAFDQCV extensions

• Multiple memory models: Weak Memory Ordering (WMO) and Total Store Ordering (TSO)

• Privileged Spec: Machine, Supervisor, User modes (v1.11)

• Debug Spec

• Single-step debugging with support for viewing memory/register contents

• Multiple CPU support

• JTAG support

• Highly extensible (add and test new instructions)

In most cases, software development for a Chipyard target will begin with functional simulation using Spike (usually
with the addition of custom Spike models for custom accelerator functions), and only later move on to full cycle-
accurate simulation using software RTL simulators or FireSim.

Spike comes pre-packaged in the RISC-V toolchain and is available on the path as spike. More information can be
found in the Spike repository.

1.6.8 Advanced Concepts

The following sections are advanced topics about how to Chipyard works, how to use Chipyard, and special features
of the framework. They expect you to know about Chisel, Parameters, Configs, etc.

Tops, Test-Harnesses, and the Test-Driver

The three highest levels of hierarchy in a Chipyard SoC are the Top (DUT), TestHarness, and the TestDriver.
The Top and TestHarness are both emitted by Chisel generators. The TestDriver serves as our testbench, and
is a Verilog file in Rocket Chip.
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Top/DUT

The top-level module of a Rocket Chip SoC is composed via cake-pattern. Specifically, “Tops” extend a System,
which extends a Subsystem, which extends a BaseSubsystem.

BaseSubsystem

The BaseSubsystem is defined in generators/rocketchip/src/main/scala/subsystem/
BaseSubsystem.scala. Looking at the BaseSubsystem abstract class, we see that this class instantiates
the top-level buses (frontbus, systembus, peripherybus, etc.), but does not specify a topology. We also see this class
define several ElaborationArtefacts, files emitted after Chisel elaboration (e.g. the device tree string, and the
diplomacy graph visualization GraphML file).

Subsystem

Looking in generators/utilities/src/main/scala/Subsystem.scala, we can see how Chipyard’s Subsystem extends the
BaseSubsystem abstract class. Subsystem mixes in the HasBoomAndRocketTiles trait that defines and
instantiates BOOM or Rocket tiles, depending on the parameters specified. We also connect some basic IOs for each
tile here, specifically the hartids and the reset vector.

System

generators/utilities/src/main/scala/System.scala completes the definition of the System.

• HasHierarchicalBusTopology is defined in Rocket Chip, and specifies connections between the top-
level buses

• HasAsyncExtInterrupts and HasExtInterruptsModuleImp adds IOs for external interrupts and
wires them appropriately to tiles

• CanHave...AXI4Port adds various Master and Slave AXI4 ports, adds TL-to-AXI4 converters, and con-
nects them to the appropriate buses

• HasPeripheryBootROM adds a BootROM device

Tops

A SoC Top then extends the System class with any config-specific components. In Chipyard, this includes things
like adding a NIC, UART, and GPIO as well as setting up the hardware for the bringup method. Please refer to
Communicating with the DUT for more information on these bringup methods.

TestHarness

The wiring between the TestHarness and the Top are performed in methods defined in mixins added to the
Top. When these methods are called from the TestHarness, they may instantiate modules within the scope
of the harness, and then connect them to the DUT. For example, the connectSimAXIMem method defined in
the CanHaveMasterAXI4MemPortModuleImp trait, when called from the TestHarness, will instantiate
‘‘SimAXIMem‘‘s and connect them to the correct IOs of the top.
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While this roundabout way of attaching to the IOs of the top may seem to be unnecessarily complex, it allows the
designer to compose custom traits together without having to worry about the details of the implementation of any
particular trait.

TestDriver

The TestDriver is defined in generators/rocketchip/src/main/resources/vsrc/
TestDriver.v. This Verilog file executes a simulation by instantiating the TestHarness, driving the
clock and reset signals, and interpreting the success output. This file is compiled with the generated Verilog for the
TestHarness and the Top to produce a simulator.

Communicating with the DUT

There are two types of DUTs that can be made: tethered or standalone DUTs. A tethered DUT is where a host
computer (or just host) must send transactions to the DUT to bringup a program. This differs from a standalone DUT
that can bringup itself (has its own bootrom, loads programs itself, etc). An example of a tethered DUT is a Chipyard
simulation where the host loads the test program into the DUTs memory and signals to the DUT that the program
is ready to run. An example of a standalone DUT is a Chipyard simulation where a program can be loaded from an
SDCard by default. In this section, we mainly describe how to communicate to tethered DUTs.

There are two ways the host (otherwise known as the outside world) can communicate with a tethered Chipyard DUT:

• Using the Tethered Serial Interface (TSI) or the Debug Module Interface (DMI) with the Front-End Server
(FESVR) to communicate with the DUT

• Using the JTAG interface with OpenOCD and GDB to communicate with the DUT

The following picture shows a block diagram view of all the supported communication mechanisms split between the
host and the simulation.
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Using the Tethered Serial Interface (TSI) or the Debug Module Interface (DMI)

If you are using TSI or DMI to communicate with the DUT, you are using the Front-End Server (FESVR) to facilitate
communication between the host and the DUT.

Primer on the Front-End Server (FESVR)

FESVR is a C++ library that manages communication between a host machine and a RISC-V DUT. For debugging, it
provides a simple API to reset, send messages, and load/run programs on a DUT. It also emulates peripheral devices.
It can be incorporated with simulators (VCS, Verilator, FireSim), or used in a bringup sequence for a taped out chip.

Specifically, FESVR uses the Host Target Interface (HTIF), a communication protocol, to speak with the DUT. HTIF
is a non-standard Berkeley protocol that uses a FIFO non-blocking interface to communicate with the DUT. It defines
a protocol where you can read/write memory, load/start/stop the program, and more. Both TSI and DMI implement
this HTIF protocol differently in order to communicate with the DUT.

Using the Tethered Serial Interface (TSI)

By default, Chipyard uses the Tethered Serial Interface (TSI) to communicate with the DUT. TSI protocol is an
implementation of HTIF that is used to send commands to the RISC-V DUT. These TSI commands are simple R/W
commands that are able to probe the DUT’s memory space. During simulation, the host sends TSI commands to a
simulation stub called SimSerial (C++ class) that resides in a SimSerial Verilog module (both are located in
the generators/testchipip project). This SimSerial Verilog module then sends the TSI command recieved
by the simulation stub into the DUT which then converts the TSI command into a TileLink request. This conversion
is done by the SerialAdapter module (located in the generators/testchipip project). In simulation,
FESVR resets the DUT, writes into memory the test program, and indicates to the DUT to start the program through
an interrupt (see Chipyard Boot Process). Using TSI is currently the fastest mechanism to communicate with the DUT
in simulation.

In the case of a chip tapeout bringup, TSI commands can be sent over a custom communication medium to com-
municate with the chip. For example, some Berkeley tapeouts have a FPGA with a RISC-V soft-core that runs
FESVR. The FESVR on the soft-core sends TSI commands to a TSI-to-TileLink converter living on the FPGA (i.e.
SerialAdapter). After the transaction is converted to TileLink, the TLSerdesser (located in generators/
testchipip) serializes the transaction and sends it to the chip (this TLSerdesser is sometimes also referred to
as a serial-link or serdes). Once the serialized transaction is received on the chip, it is deserialized and masters a bus
on the chip. The following image shows this flow:
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Note: The TLSerdesser can also be used as a slave (client), so it can sink memory requests from the chip and
connect to off-chip backing memory. Or in other words, TLSerdesser creates a bi-directional TileLink interface.

Using the Debug Module Interface (DMI)

Another option to interface with the DUT is to use the Debug Module Interface (DMI). Similar to TSI, the DMI
protocol is an implementation of HTIF. In order to communicate with the DUT with the DMI protocol, the DUT
needs to contain a Debug Transfer Module (DTM). The DTM is given in the RISC-V Debug Specification and is
responsible for managing communication between the DUT and whatever lives on the other side of the DMI (in this
case FESVR). This is implemented in the Rocket Chip Subsystem by having the HasPeripheryDebug and
HasPeripheryDebugModuleImp mixins. During simulation, the host sends DMI commands to a simulation
stub called SimDTM (C++ class) that resides in a SimDTM Verilog module (both are located in the generators/
rocket-chip project). This SimDTMVerilog module then sends the DMI command recieved by the simulation stub
into the DUT which then converts the DMI command into a TileLink request. This conversion is done by the DTM
named DebugModule in the generators/rocket-chip project. When the DTM receives the program to load,
it starts to write the binary byte-wise into memory. This is considerably slower than the TSI protocol communication
pipeline (i.e. SimSerial/SerialAdapter/TileLink) which directly writes the program binary to memory. Thus,
Chipyard removes the DTM by default in favor of the TSI protocol for DUT communication.

Starting the TSI or DMI Simulation

All default Chipyard configurations use TSI to communicate between the simulation and the simulated SoC/DUT.
Hence, when running a software RTL simulation, as is indicated in the Software RTL Simulation section, you are
in-fact using TSI to communicate with the DUT. As a reminder, to run a software RTL simulation, run:

cd sims/verilator
# or
cd sims/vcs

make CONFIG=LargeBoomConfig run-asm-tests

FireSim FPGA-accelerated simulations use TSI by default as well.

If you would like to build and simulate a Chipyard configuration with a DTM configured for DMI communica-
tion, then you must create a top-level system with the DTM (TopWithDTM), a test-harness to connect to the DTM
(TestHarnessWithDTM), as well as a config to use that top-level system.

class dmiRocketConfig extends Config(
new WithDTM ++ // use top with dtm
new WithNoGPIO ++
new WithBootROM ++
new WithUART ++
new freechips.rocketchip.subsystem.WithNoMMIOPort ++
new freechips.rocketchip.subsystem.WithNoSlavePort ++
new freechips.rocketchip.subsystem.WithInclusiveCache ++
new freechips.rocketchip.subsystem.WithNBigCores(1) ++
new freechips.rocketchip.system.BaseConfig)

In this example, the WithDTM mixin specifies that the top-level SoC will instantiate a DTM (that by default is setup to
use DMI). The rest of the mixins specify the rest of the system (cores, accelerators, etc). Then you can run simulations
with the new DMI-enabled top-level and test-harness.
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cd sims/verilator
# or
cd sims/vcs

make CONFIG=dmiRocketConfig run-asm-tests

Using the JTAG Interface

The main way to use JTAG with a Rocket Chip based system is to instantiate the Debug Transfer Module (DTM) and
configure it to use a JTAG interface (by default the DTM is setup to use the DMI interface mentioned above).

Creating a DTM+JTAG Config

First, a DTM config must be created for the system that you want to create. This step is similar to the DMI simulation
section within the Starting the TSI or DMI Simulation section. The configuration is very similar to a DMI-based
configuration. The main difference is the addition of the WithJtagDTM mixin that configures the instantiated DTM
to use the JTAG protocol as the bringup method.

class jtagRocketConfig extends Config(
new WithDTM ++ // use top with dtm
new WithNoGPIO ++
new WithBootROM ++
new WithUART ++
new freechips.rocketchip.subsystem.WithJtagDTM ++ // enable communicating

→˓with the DTM using jtag
new freechips.rocketchip.subsystem.WithNoMMIOPort ++
new freechips.rocketchip.subsystem.WithNoSlavePort ++
new freechips.rocketchip.subsystem.WithInclusiveCache ++
new freechips.rocketchip.subsystem.WithNBigCores(1) ++
new freechips.rocketchip.system.BaseConfig)

Building a DTM+JTAG Simulator

After creating the config, call the make command like the following to build a simulator for your RTL:

cd sims/verilator
# or
cd sims/vcs

make CONFIG=jtagRocketConfig

In this example, the simulation will use the config that you previously specified, as well as set the other parameters
that are needed to satisfy the build system. After that point, you should have a JTAG enabled simulator that you can
attach to using OpenOCD and GDB!

Debugging with JTAG

Please refer to the following resources on how to debug with JTAG.

• https://github.com/chipsalliance/rocket-chip#-debugging-with-gdb

• https://github.com/riscv/riscv-isa-sim#debugging-with-gdb
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Debugging RTL

While the packaged Chipyard configs and RTL have been tested to work, users will typically want to build custom chips
by adding their own IP, or by modifying existing Chisel generators. Such changes might introduce bugs. This section
aims to run through a typical debugging flow using Chipyard. We assume the user has a custom SoC configuration,
and is trying to verify functionality by running some software test. We also assume the software has already been
verified on a functional simulator, such as Spike or QEMU. This section will focus on debugging hardware.

Waveforms

The default software RTL simulators do not dump waveforms during execution. To build simulators with wave dump
capabilities use must use the debug make target. For example:

make CONFIG=CustomConfig debug

The run-binary-debug rule will also automatically build a simulator, run it on a custom binary, and generate a
waveform. For example, to run a test on helloworld.riscv, use

make CONFIG=CustomConfig run-binary-debug BINARY=helloworld.riscv

VCS and Verilator also support many additional flags. For example, specifying the +vpdfilesize flag in VCS will
treat the output file as a circular buffer, saving disk space for long-running simulations. Refer to the VCS and Verilator
manuals for more information You may use the SIM_FLAGS make variable to set additional simulator flags:

make CONFIG=CustomConfig run-binary-debug BINARY=linux.riscv SIM_
→˓FLAGS=+vpdfilesize=1024

Note: In some cases where there is multiple simulator flags, you can write the SIM_FLAGS like the following:
SIM_FLAGS="+vpdfilesize=XYZ +some_other_flag=ABC".

Print Output

Both Rocket and BOOM can be configured with varying levels of print output. For information see the Rocket core
source code, or the BOOM documentation website. In addition, developers may insert arbitrary printfs at arbitrary
conditions within the Chisel generators. See the Chisel documentation for information on this.

Once the cores have been configured with the desired print statements, the +verbose flag will cause the simulator to
print the statements. The following commands will all generate desired print statements:

make CONFIG=CustomConfig run-binary-debug BINARY=helloworld.riscv

# The below command does the same thing
./simv-CustomConfig-debug +verbose helloworld.riscv

Both cores can be configured to print out commit logs, which can then be compared against a Spike commit log to
verify correctness.

Basic tests

riscv-tests includes basic ISA-level tests and basic benchmarks. These are used in Chipyard CI, and should be
the first step in verifying a chip’s functionality. The make rule is
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make CONFIG=CustomConfig run-asm-tests run-bmark-tests

Torture tests

The RISC-V torture utility generates random RISC-V assembly streams, compiles them, runs them on both the Spike
functional model and the SW simulator, and verifies identical program behavior. The torture utility can also be con-
figured to run continuously for stress-testing. The torture utility exists within the utilities directory.

Firesim Debugging

Chisel printfs, asserts, and waveform generation are also available in FireSim FPGA-accelerated simulation. See the
FireSim documentation for more detail.

Accessing Scala Resources

A simple way to copy over a source file to the build directory to be used for a simulation compile or VLSI
flow is to use the addResource function given by FIRRTL. An example of its use can be seen in genera-
tors/testchipip/src/main/scala/SerialAdapter.scala. Here is the example inlined:

class SimSerial(w: Int) extends BlackBox with HasBlackBoxResource {
val io = IO(new Bundle {
val clock = Input(Clock())
val reset = Input(Bool())
val serial = Flipped(new SerialIO(w))
val exit = Output(Bool())

})

addResource("/testchipip/vsrc/SimSerial.v")
addResource("/testchipip/csrc/SimSerial.cc")

}

In this example, the SimSerial files will be copied from a specific folder (in this case the path/to/
testchipip/src/main/resources/testchipip/...) to the build folder. The addResource path re-
trieves resources from the src/main/resources directory. So to get an item at src/main/resources/
fileA.v you can use addResource("/fileA.v"). However, one caveat of this approach is that to retrieve
the file during the FIRRTL compile, you must have that project in the FIRRTL compiler’s classpath. Thus, you need
to add the SBT project as a dependency to the FIRRTL compiler in the Chipyard build.sbt, which in Chipyards
case is the tapeout project. For example, you added a new project called myAwesomeAccel in the Chipyard
build.sbt. Then you can add it as a dependsOn dependency to the tapeout project. For example:

lazy val myAwesomeAccel = (project in file("generators/myAwesomeAccelFolder"))
.dependsOn(rocketchip)
.settings(commonSettings)

lazy val tapeout = conditionalDependsOn(project in file("./tools/barstools/tapeout/"))
.dependsOn(myAwesomeAccel)
.settings(commonSettings)
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Context-Dependent-Environments

Readers may notice that the parameterization system frequently uses (site, here, up). This construct is an
artifact of the “context-dependent-environment” system which Chipyard and Rocket Chip both leverage for powerful
composable hardware configuration.

The CDE parameterization system provides different “Views” of a single global parameterization. The syntax for ac-
cessing a Field within a View is my_view(MyKey, site_view), where site_view is a “global” view
that will be passed recursively into various functions and key-lookups in the call-stack of my_view(MyKey,
site_view).

Note: Rocket Chip based designs will frequently use val p: Parameters and p(SomeKey) to lookup the
value of a key. Parameters is just a subclass of the View abstract class, and p(SomeKey) really expands into
p(SomeKey, p). This is because we consider the call p(SomeKey) to be the “site”, or “source” of the original
key query, so we need to pass in the view of the configuration provided by p recursively to future calls through the
site argument.

Consider the following example using CDEs.

case object SomeKeyX extends Field[Boolean](false) // default is false
case object SomeKeyY extends Field[Boolean](false) // default is false
case object SomeKeyZ extends Field[Boolean](false) // default is false

class WithX(b: Boolean) extends Config((site, here, up) => {
case SomeKeyX => b

}

class WithY(b: Boolean) extends Config((site, here, up) => {
case SomeKeyY => b

}

When forming a query based on a Parameters object, like p(SomeKeyX), the configuration system traverses the
“chain” of mixins until it finds a partial function which is defined at the key, and then returns that value.

val params = Config(new WithX(true) ++ new WithY(true)) // "chain" together mixins
params(SomeKeyX) // evaluates to true
params(SomeKeyY) // evaluates to true
params(SomeKeyZ) // evaluates to false

In this example, the evaluation of params(SomeKeyX) will terminate in the partial function defined in
WithX(true), while the evaluation of params(SomeKeyY) will terminate in the partial function defined in
WithY(true). Note that when no partial functions match, the evaluation will return the default value for that
parameter.

The real power of CDEs arises from the (site, here, up) parameters to the partial functions, which provide
useful “views” into the global parameterization that the partial functions may access to determine a parameterization.

Note: Additional information on the motivations for CDEs can be found in Chapter 2 of Henry Cook’s Thesis .

Site

site provides a View of the “source” of the original parameter query.
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class WithXEqualsYSite extends Config((site, here, up) => {
case SomeKeyX => site(SomeKeyY) // expands to site(SomeKeyY, site)

}

val params_1 = Config(new WithXEqualsYSite ++ new WithY(true))
val params_2 = Config(new WithY(true) ++ new WithXEqualsYSite)
params_1(SomeKeyX) // evaluates to true
params_2(SomeKeyX) // evaluates to true

In this example, the partial function in WithXEqualsYSite will look up the value of SomeKeyY in the original
params_N object, which becomes site in each call in the recursive traversal.

Here

here provides a View of the locally defined Config, which typically just contains some partial function.

class WithXEqualsYHere extends Config((site, here, up) => {
case SomeKeyY => false
case SomeKeyX => here(SomeKeyY, site)

}

val params_1 = Config(new WithXEqualsYHere ++ new WithY(true))
val params_2 = Config(new WithY(true) ++ new WithXEqualsYHere)

params_1(SomeKeyX) // evaluates to false
params_2(SomeKeyX) // evaluates to false

In this example, note that although our final parameterization in params_2 has SomeKeyY set to true, the call to
here(SomeKeyY, site) only looks in the local partial function defined in WithXEqualsYHere. Note that we
pass site to here since site may be used in the recursive call.

Up

up provides a View of the previously defined set of partial functions in the “chain” of partial functions. This is useful
when we want to lookup a previously set value for some key, but not the final value for that key.

class WithXEqualsYUp extends Config((site, here, up) => {
case SomeKeyX => up(SomeKeyY, site)

}

val params_1 = Config(new WithXEqualsYUp ++ new WithY(true))
val params_2 = Config(new WithY(true) ++ new WithXEqualsYUp)

params_1(SomeKeyX) // evaluates to true
params_2(SomeKeyX) // evaluates to false

In this example, note how up(SomeKeyY, site) in WithXEqualsYUp will refer to either the the partial func-
tion defining SomeKeyY in WithY(true) or the default value for SomeKeyY provided in the original case
object SomeKeyY definition, depending on the order in which the mixins were used. Since the order of mixins
affects the the order of the View traversal, up provides a different View of the parameterization in params_1 and
params_2.

Also note that again, site must be recursively passed through the call to up.

1.6. Table of Contents 73



Chipyard Documentation, Release 0.1

1.6.9 TileLink and Diplomacy Reference

TileLink is the cache coherence and memory protocol used by RocketChip and other Chipyard generators. It is how
different modules like caches, memories, peripherals, and DMA devices communicate with each other.

RocketChip’s TileLink implementation is built on top of Diplomacy, a framework for exchanging configuration infor-
mation among Chisel generators in a two-phase elaboration scheme. For a detailed explanation of Diplomacy, see the
paper by Cook, Terpstra, and Lee.

A brief overview of how to connect simple TileLink widgets can be found in the Adding-an-Accelerator section. This
section will provide a detailed reference for the TileLink and Diplomacy functionality provided by RocketChip.

A detailed specification of the TileLink 1.7 protocol can be found on the SiFive website.

TileLink Node Types

Diplomacy represents the different components of an SoC as nodes of a directed acyclic graph. TileLink nodes can
come in several different types.

Client Node

TileLink clients are modules that initiate TileLink transactions by sending requests on the A channel and receive
responses on the D channel. If the client implements TL-C, it will receive probes on the B channel, send releases on
the C channel, and send grant acknowledgements on the E channel.

The L1 caches and DMA devices in RocketChip/Chipyard have client nodes.

You can add a TileLink client node to your LazyModule using the TLHelper object from testchipip like so:

class MyClient(implicit p: Parameters) extends LazyModule {
val node = TLHelper.makeClientNode(TLClientParameters(
name = "my-client",
sourceId = IdRange(0, 4),
requestFifo = true,
visibility = Seq(AddressSet(0x10000, 0xffff))))

lazy val module = new LazyModuleImp(this) {
val (tl, edge) = node.out(0)

// Rest of code here
}

}

The name argument identifies the node in the Diplomacy graph. It is the only required argument for TLClientParam-
eters.

The sourceId argument specifies the range of source identifiers that this client will use. Since we have set the range
to [0, 4) here, this client will be able to send up to four requests in flight at a time. Each request will have a distinct
value in its source field. The default value for this field is IdRange(0, 1), which means it would only be able to
send a single request inflight.

The requestFifo argument is a boolean option which defaults to false. If it is set to true, the client will request
that downstream managers that support it send responses in FIFO order (that is, in the same order the corresponding
requests were sent).

The visibility argument specifies the address ranges that the client will access. By default it is set to include all
addresses. In this example, we set it to contain a single address range AddressSet(0x10000, 0xffff), which
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means that the client will only be able to access addresses from 0x10000 to 0x1ffff. normally do not specify this, but it
can help downstream crossbar generators optimize the hardware by not arbitrating the client to managers with address
ranges that don’t overlap with its visibility.

Inside your lazy module implementation, you can call node.out to get a list of bundle/edge pairs. If you used the
TLHelper, you only specified a single client edge, so this list will only have one pair.

The tl bundle is a Chisel hardware bundle that connects to the IO of this module. It contains two (in the case of
TL-UL and TL-UH) or five (in the case of TL-C) decoupled bundles corresponding to the TileLink channels. This is
what you should connect your hardware logic to in order to actually send/receive TileLink messages.

The edge object represents the edge of the Diplomacy graph. It contains some useful helper functions which will be
documented in TileLink Edge Object Methods.

Manager Node

TileLink managers take requests from clients on the A channel and send responses back on the D channel. You can
create a manager node using the TLHelper like so:

class MyManager(implicit p: Parameters) extends LazyModule {
val device = new SimpleDevice("my-device", Seq("tutorial,my-device0"))
val beatBytes = 8
val node = TLHelper.makeManagerNode(beatBytes, TLManagerParameters(
address = Seq(AddressSet(0x20000, 0xfff)),
resources = device.reg,
regionType = RegionType.UNCACHED,
executable = true,
supportsArithmetic = TransferSizes(1, beatBytes),
supportsLogical = TransferSizes(1, beatBytes),
supportsGet = TransferSizes(1, beatBytes),
supportsPutFull = TransferSizes(1, beatBytes),
supportsPutPartial = TransferSizes(1, beatBytes),
supportsHint = TransferSizes(1, beatBytes),
fifoId = Some(0)))

lazy val module = new LazyModuleImp(this) {
val (tl, edge) = node.in(0)

}
}

The makeManagerNode method takes two arguments. The first is beatBytes, which is the physical width of the
TileLink interface in bytes. The second is a TLManagerParameters object.

The only required argument for TLManagerParameters is the address, which is the set of address ranges that
this manager will serve. This information is used to route requests from the clients. In this example, the manager will
only take requests for addresses from 0x20000 to 0x20fff. The second argument in AddressSet is a mask, not a
size. You should generally set it to be one less than a power of two. Otherwise, the addressing behavior may not be
what you expect.

The second argument is resources, which is usually retrieved from a Device object. In this case, we use a
SimpleDevice object. This argument is necessary if you want to add an entry to the DeviceTree in the BootROM
so that it can be read by a Linux driver. The two arguments to SimpleDevice are the name and compatibility list
for the device tree entry. For this manager, then, the device tree entry would look like

L12: my-device@20000 {
compatible = "tutorial,my-device0";

(continues on next page)
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reg = <0x20000 0x1000>;
};

The next argument is regionType, which gives some information about the caching behavior of the manager. There
are seven region types, listed below:

1. CACHED - An intermediate agent may have cached a copy of the region for you.

2. TRACKED - The region may have been cached by another master, but coherence is being provided.

3. UNCACHED - The region has not been cached yet, but should be cached when possible.

4. IDEMPOTENT - Gets return most recently put content, but content should not be cached.

5. VOLATILE - Content may change without a put, but puts and gets have no side effects.

6. PUT_EFFECTS - Puts produce side effects and so must not be combined/delayed.

7. GET_EFFECTS - Gets produce side effects and so must not be issued speculatively.

Next is the executable argument, which determines if the CPU is allowed to fetch instructions from this manager.
By default it is false, which is what most MMIO peripherals should set it to.

The next six arguments start with support and determine the different A channel message types that the manager can
accept. The definitions of the message types are explained in TileLink Edge Object Methods. The TransferSizes
case class specifies the range of logical sizes (in bytes) that the manager can accept for the particular message type.
This is an inclusive range and all logical sizes must be powers of two. So in this case, the manager can accept requests
with sizes of 1, 2, 4, or 8 bytes.

The final argument shown here is the fifoId setting, which determines which FIFO domain (if any) the manager is
in. If this argument is set to None (the default), the manager will not guarantee any ordering of the responses. If the
fifoId is set, it will share a FIFO domain with all other managers that specify the same fifoId. This means that
client requests sent to that FIFO domain will see responses in the same order.

Register Node

While you can directly specify a manager node and write all of the logic to handle TileLink requests, it is usually much
easier to use a register node. This type of node provides a regmap method that allows you to specify control/status
registers and automatically generates the logic to handle the TileLink protocol. More information about how to use
register nodes can be found in Register Router.

Identity Node

Unlike the previous node types, which had only inputs or only outputs, the identity node has both. As its name
suggests, it simply connects the inputs to the outputs unchanged. This node is mainly used to combine multiple nodes
into a single node with multiple edges. For instance, say we have two client lazy modules, each with their own client
node.

class MyClient1(implicit p: Parameters) extends LazyModule {
val node = TLHelper.makeClientNode("my-client1", IdRange(0, 1))

lazy val module = new LazyModuleImp(this) {
// ...

}
}

(continues on next page)
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class MyClient2(implicit p: Parameters) extends LazyModule {
val node = TLHelper.makeClientNode("my-client2", IdRange(0, 1))

lazy val module = new LazyModuleImp(this) {
// ...

}
}

Now we instantiate these two clients in another lazy module and expose their nodes as a single node.

class MyClientGroup(implicit p: Parameters) extends LazyModule {
val client1 = LazyModule(new MyClient1)
val client2 = LazyModule(new MyClient2)
val node = TLIdentityNode()

node := client1.node
node := client2.node

lazy val module = new LazyModuleImp(this) {
// Nothing to do here

}
}

We can also do the same for managers.

class MyManager1(beatBytes: Int)(implicit p: Parameters) extends LazyModule {
val node = TLHelper.makeManagerNode(beatBytes, TLManagerParameters(
address = Seq(AddressSet(0x0, 0xfff))))

lazy val module = new LazyModuleImp(this) {
// ...

}
}

class MyManager2(beatBytes: Int)(implicit p: Parameters) extends LazyModule {
val node = TLHelper.makeManagerNode(beatBytes, TLManagerParameters(
address = Seq(AddressSet(0x1000, 0xfff))))

lazy val module = new LazyModuleImp(this) {
// ...

}
}

class MyManagerGroup(beatBytes: Int)(implicit p: Parameters) extends LazyModule {
val man1 = LazyModule(new MyManager1(beatBytes))
val man2 = LazyModule(new MyManager2(beatBytes))
val node = TLIdentityNode()

man1.node := node
man2.node := node

lazy val module = new LazyModuleImp(this) {
// Nothing to do here

}
}

If we want to connect the client and manager groups together, we can now do this.
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class MyClientManagerComplex(implicit p: Parameters) extends LazyModule {
val client = LazyModule(new MyClientGroup)
val manager = LazyModule(new MyManagerGroup(8))

manager.node :=* client.node

lazy val module = new LazyModuleImp(this) {
// Nothing to do here

}
}

The meaning of the :=* operator is explained in more detail in the Diplomacy Connectors section. In summary, it
connects two nodes together using multiple edges. The edges in the identity node are assigned in order, so in this case
client1.node will eventually connect to manager1.node and client2.node will connect to manager2.
node.

The number of inputs to an identity node should match the number of outputs. A mismatch will cause an elaboration
error.

Adapter Node

Like the identity node, the adapter node takes some number of inputs and produces the same number of outputs.
However, unlike the identity node, the adapter node does not simply pass the connections through unchanged. It can
change the logical and physical interfaces between input and output and rewrite messages going through. RocketChip
provides a library of adapters, which are catalogued in Diplomatic Widgets.

You will rarely need to create an adapter node yourself, but the invocation is as follows.

val node = TLAdapterNode(
clientFn = { cp =>
// ..

},
managerFn = { mp =>
// ..

})

The clientFn is a function that takes the TLClientPortParameters of the input as an argument and returns
the corresponding parameters for the output. The managerFn takes the TLManagerPortParameters of the
output as an argument and returns the corresponding parameters for the input.

Nexus Node

The nexus node is similar to the adapter node in that it has a different output interface than input interface. But it can
also have a different number of inputs than it does outputs. This node type is mainly used by the TLXbar widget,
which provides a TileLink crossbar generator. You will also likely not need to define this node type manually, but its
invocation is as follows.

val node = TLNexusNode(
clientFn = { seq =>
// ..

},
managerFn = { seq =>
// ..

})

78 Chapter 1. Quick Start



Chipyard Documentation, Release 0.1

This has similar arguments as the adapter node’s constructor, but instead of taking single parameters objects as argu-
ments and returning single objects as results, the functions take and return sequences of parameters. And as you might
expect, the size of the returned sequence need not be the same size as the input sequence.

Diplomacy Connectors

Nodes in a Diplomacy graph are connected to each other with edges. The Diplomacy library provides four operators
that can be used to form edges between nodes.

:=

This is the basic connection operator. It is the same syntax as the Chisel uni-directional connector, but it is not
equivalent. This operator connects Diplomacy nodes, not Chisel bundles.

The basic connection operator always creates a single edge between the two nodes.

:=*

This is a “query” type connection operator. It can create multiple edges between nodes, with the number of edges
determined by the client node (the node on the right side of the operator). This can be useful if you are connecting a
multi-edge client to a nexus node or adapter node.

:*=

This is a “star” type connection operator. It also creates multiple edges, but the number of edges is determined by the
manager (left side of operator), rather than the client. It’s useful for connecting nexus nodes to multi-edge manager
nodes.

:*=*

This is a “flex” connection operator. It creates multiple edges based on whichever side of the operator has a known
number of edges. This can be used in generators where the type of node on either side isn’t known until runtime.

TileLink Edge Object Methods

The edge object associated with a TileLink node has several helpful methods for constructing TileLink messages and
retrieving data from them.

Get

Constructor for a TLBundleA encoding a Get message, which requests data from memory. The D channel response
to this message will be an AccessAckData, which may have multiple beats.

Arguments:

• fromSource: UInt - Source ID for this transaction

• toAddress: UInt - The address to read from

• lgSize: UInt - Base two logarithm of the number of bytes to be read
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Returns:

A (Bool, TLBundleA) tuple. The first item in the pair is a boolean indicating whether or not the operation is
legal for this edge. The second is the A channel bundle.

Put

Constructor for a TLBundleA encoding a PutFull or PutPartial message, which write data to memory. It will
be a PutPartial if the mask is specified and a PutFull if it is omitted. The put may require multiple beats. If
that is the case, only data and mask should change for each beat. All other fields must be the same for all beats in
the transaction, including the address. The manager will respond to this message with a single AccessAck.

Arguments:

• fromSource: UInt - Source ID for this transaction.

• toAddress: UInt - The address to write to.

• lgSize: UInt - Base two logarithm of the number of bytes to be written.

• data: UInt - The data to write on this beat.

• mask: UInt - (optional) The write mask for this beat.

Returns:

A (Bool, TLBundleA) tuple. The first item in the pair is a boolean indicating whether or not the operation is
legal for this edge. The second is the A channel bundle.

Arithmetic

Constructor for a TLBundleA encoding an Arithmetic message, which is an atomic operation. The possible
values for the atomic field are defined in the TLAtomics object. It can be MIN, MAX, MINU, MAXU, or ADD,
which correspond to atomic minimum, maximum, unsigned minimum, unsigned maximum, or addition operations,
respectively. The previous value at the memory location will be returned in the response, which will be in the form of
an AccessAckData.

Arguments:

• fromSource: UInt - Source ID for this transaction.

• toAddress: UInt - The address to perform an arithmetic operation on.

• lgSize: UInt - Base two logarithm of the number of bytes to operate on.

• data: UInt - Right-hand operand of the arithmetic operation

• atomic: UInt - Arithmetic operation type (from TLAtomics)

Returns:

A (Bool, TLBundleA) tuple. The first item in the pair is a boolean indicating whether or not the operation is
legal for this edge. The second is the A channel bundle.

Logical

Constructor for a TLBundleA encoding a Logical message, an atomic operation. The possible values for the
atomic field are XOR, OR, AND, and SWAP, which correspond to atomic bitwise exclusive or, bitwise inclusive
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or, bitwise and, and swap operations, respectively. The previous value at the memory location will be returned in an
AccessAckData response.

Arguments:

• fromSource: UInt - Source ID for this transaction.

• toAddress: UInt - The address to perform a logical operation on.

• lgSize: UInt - Base two logarithm of the number of bytes to operate on.

• data: UInt - Right-hand operand of the logical operation

• atomic: UInt - Logical operation type (from TLAtomics)

Returns:

A (Bool, TLBundleA) tuple. The first item in the pair is a boolean indicating whether or not the operation is
legal for this edge. The second is the A channel bundle.

Hint

Constructor for a TLBundleA encoding a Hint message, which is used to send prefetch hints to caches. The
param argument determines what kind of hint it is. The possible values come from the TLHints object and are
PREFETCH_READ and PREFETCH_WRITE. The first one tells caches to acquire data in a shared state. The second
one tells cache to acquire data in an exclusive state. If the cache this message reaches is a last-level cache, there
won’t be any difference. If the manager this message reaches is not a cache, it will simply be ignored. In any case, a
HintAck message will be sent in response.

Arguments:

• fromSource: UInt - Source ID for this transaction.

• toAddress: UInt - The address to prefetch

• lgSize: UInt - Base two logarithm of the number of bytes to prefetch

• param: UInt - Hint type (from TLHints)

Returns:

A (Bool, TLBundleA) tuple. The first item in the pair is a boolean indicating whether or not the operation is
legal for this edge. The second is the A channel bundle.

AccessAck

Constructor for a TLBundleD encoding an AccessAck or AccessAckData message. If the optional data field
is supplied, it will be an AccessAckData. Otherwise, it will be an AccessAck.

Arguments

• a: TLBundleA - The A channel message to acknowledge

• data: UInt - (optional) The data to send back

Returns:

The TLBundleD for the D channel message.
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HintAck

Constructor for a TLBundleD encoding a HintAck message.

Arguments

• a: TLBundleA - The A channel message to acknowledge

Returns:

The TLBundleD for the D channel message.

first

This method take a decoupled channel (either the A channel or D channel) and determines whether the current beat is
the first beat in the transaction.

Arguments:

• x: DecoupledIO[TLChannel] - The decoupled channel to snoop on.

Returns:

A Boolean which is true if the current beat is the first, or false otherwise.

last

This method take a decoupled channel (either the A channel or D channel) and determines whether the current beat is
the last in the transaction.

Arguments:

• x: DecoupledIO[TLChannel] - The decoupled channel to snoop on.

Returns:

A Boolean which is true if the current beat is the last, or false otherwise.

done

Equivalent to x.fire() && last(x).

Arguments:

• x: DecoupledIO[TLChannel] - The decoupled channel to snoop on.

Returns:

A Boolean which is true if the current beat is the last and a beat is sent on this cycle. False otherwise.

count

This method take a decoupled channel (either the A channel or D channel) and determines the count (starting from 0)
of the current beat in the transaction.

Arguments:

• x: DecoupledIO[TLChannel] - The decoupled channel to snoop on.
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Returns:

A UInt indicating the count of the current beat.

numBeats

This method takes in a TileLink bundle and gives the number of beats expected for the transaction.

Arguments:

• x: TLChannel - The TileLink bundle to get the number of beats from

Returns:

A UInt that is the number of beats in the current transaction.

numBeats1

Similar to numBeats except it gives the number of beats minus one. If this is what you need, you should use this
instead of doing numBeats - 1.U, as this is more efficient.

Arguments:

• x: TLChannel - The TileLink bundle to get the number of beats from

Returns:

A UInt that is the number of beats in the current transaction minus one.

hasData

Determines whether the TileLink message contains data or not. This is true if the message is a PutFull, PutPartial,
Arithmetic, Logical, or AccessAckData.

Arguments:

• x: TLChannel - The TileLink bundle to check

Returns:

A Boolean that is true if the current message has data and false otherwise.

Register Router

Memory-mapped devices generally follow a common pattern. They expose a set of registers to the CPUs. By writing
to a register, the CPU can change the device’s settings or send a command. By reading from a register, the CPU can
query the device’s state or retrieve results.

While designers can manually instantiate a manager node and write the logic for exposing registers themselves, it’s
much easier to use RocketChip’s regmap interface, which can generate most of the glue logic.

For TileLink devices, you can use the regmap interface by extending the TLRegisterRouter class, as shown in
Adding An Accelerator/Device, or you can create a regular LazyModule and instantiate a TLRegisterNode. This
section will focus on the second method.
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Basic Usage

import chisel3._
import chisel3.util._
import freechips.rocketchip.config.Parameters
import freechips.rocketchip.diplomacy._
import freechips.rocketchip.regmapper._
import freechips.rocketchip.tilelink.TLRegisterNode

class MyDeviceController(implicit p: Parameters) extends LazyModule {
val device = new SimpleDevice("my-device", Seq("tutorial,my-device0"))
val node = TLRegisterNode(
address = Seq(AddressSet(0x10028000, 0xfff)),
device = device,
beatBytes = 8,
concurrency = 1)

lazy val module = new LazyModuleImp(this) {
val bigReg = RegInit(0.U(64.W))
val mediumReg = RegInit(0.U(32.W))
val smallReg = RegInit(0.U(16.W))

val tinyReg0 = RegInit(0.U(4.W))
val tinyReg1 = RegInit(0.U(4.W))

node.regmap(
0x00 -> Seq(RegField(64, bigReg)),
0x08 -> Seq(RegField(32, mediumReg)),
0x0C -> Seq(RegField(16, smallReg)),
0x0E -> Seq(

RegField(4, tinyReg0),
RegField(4, tinyReg1)))

}
}

The code example above shows a simple lazy module that uses the TLRegisterNode to memory map hardware
registers of different sizes. The constructor has two required arguments: address, which is the base address of the
registers, and device, which is the device tree entry. There are also two optional arguments. The beatBytes
argument is the interface width in bytes. The default value is 4 bytes. The concurrency argument is the size of the
internal queue for TileLink requests. By default, this value is 0, which means there will be no queue. This value must
be greater than 0 if you wish to decoupled requests and responses for register accesses. This is discussed in Using
Functions.

The main way to interact with the node is to call the regmap method, which takes a sequence of pairs. The first
element of the pair is an offset from the base address. The second is a sequence of RegField objects, each of which
maps a different register. The RegField constructor takes two arguments. The first argument is the width of the
register in bits. The second is the register itself.

Since the argument is a sequence, you can associate multiple RegField objects with an offset. If you do, the registers
are read or written in parallel when the offset is accessed. The registers are in little endian order, so the first register in
the list corresponds to the least significant bits in the value written. In this example, if the CPU wrote to offset 0x0E
with the value 0xAB, smallReg0 will get the value 0xB and smallReg1 would get 0xA.
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Decoupled Interfaces

Sometimes you may want to do something other than read and write from a hardware register. The RegField
interface also provides support for reading and writing DecoupledIO interfaces. For instance, you can implement a
hardware FIFO like so.

// 4-entry 64-bit queue
val queue = Module(new Queue(UInt(64.W), 4))

node.regmap(
0x00 -> Seq(RegField(64, queue.io.deq, queue.io.enq)))

This variant of the RegField constructor takes three arguments instead of two. The first argument is still the bit
width. The second is the decoupled interface to read from. The third is the decoupled interface to write to. In this
example, writing to the “register” will push the data into the queue and reading from it will pop data from the queue.

You need not specify both read and write for a register. You can also create read-only or write-only registers. So for
the previous example, if you wanted enqueue and dequeue to use different addresses, you could write the following.

node.regmap(
0x00 -> Seq(RegField.r(64, queue.io.deq)),
0x08 -> Seq(RegField.w(64, queue.io.enq)))

The read-only register function can also be used to read signals that aren’t registers.

val constant = 0xf00d.U

node.regmap(
0x00 -> Seq(RegField.r(8, constant)))

Using Functions

You can also create registers using functions. Say, for instance, that you want to create a counter that gets incremented
on a write and decremented on a read.

val counter = RegInit(0.U(64.W))

def readCounter(ready: Bool): (Bool, UInt) = {
when (ready) { counter := counter - 1.U }
// (ready, bits)
(true.B, counter)

}

def writeCounter(valid: Bool, bits: UInt): Bool = {
when (valid) { counter := counter + 1.U }
// Ignore bits
// Return ready
true.B

}

node.regmap(
0x00 -> Seq(RegField.r(64, readCounter(_))),
0x08 -> Seq(RegField.w(64, writeCounter(_, _))))

The functions here are essentially the same as a decoupled interface. The read function gets passed the ready
signal and returns the valid and bits signals. The write function gets passed valid` and ``bits and returns
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ready.

You can also pass functions that decouple the read/write request and response. The request will appear as a decoupled
input and the response as a decoupled output. So for instance, if we wanted to do this for the previous example.

val counter = RegInit(0.U(64.W))

def readCounter(ivalid: Bool, oready: Bool): (Bool, Bool, UInt) = {
val responding = RegInit(false.B)

when (ivalid && !responding) { responding := true.B }

when (responding && oready) {
counter := counter - 1.U
responding := false.B

}

// (iready, ovalid, obits)
(!responding, responding, counter)

}

def writeCounter(ivalid: Bool, oready: Bool, ibits: UInt): (Bool, Bool) = {
val responding = RegInit(false.B)

when (ivalid && !responding) { responding := true.B }

when (responding && oready) {
counter := counter + 1.U
responding := false.B

}

// (iready, ovalid)
(!responding, responding)

}

node.regmap(
0x00 -> Seq(RegField.r(64, readCounter(_, _))),
0x08 -> Seq(RegField.w(64, writeCounter(_, _, _))))

In each function, we set up a state variable responding. The function is ready to take requests when this is false
and is sending a response when this is true.

In this variant, both read and write take an input valid and return an output ready. The only different is that bits is an
input for read and an output for write.

In order to use this variant, you need to set concurrency to a value larger than 0.

Register Routers for Other Protocols

One useful feature of the register router interface is that you can easily change the protocol being used. For instance,
in the first example in Basic Usage, you could simply change the TLRegisterNode to and AXI4RegisterNode.

import freechips.rocketchip.amba.axi4.AXI4RegisterNode

class MyAXI4DeviceController(implicit p: Parameters) extends LazyModule {
val node = AXI4RegisterNode(
address = AddressSet(0x10029000, 0xfff),

(continues on next page)
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beatBytes = 8,
concurrency = 1)

lazy val module = new LazyModuleImp(this) {
val bigReg = RegInit(0.U(64.W))
val mediumReg = RegInit(0.U(32.W))
val smallReg = RegInit(0.U(16.W))

val tinyReg0 = RegInit(0.U(4.W))
val tinyReg1 = RegInit(0.U(4.W))

node.regmap(
0x00 -> Seq(RegField(64, bigReg)),
0x08 -> Seq(RegField(32, mediumReg)),
0x0C -> Seq(RegField(16, smallReg)),
0x0E -> Seq(
RegField(4, tinyReg0),
RegField(4, tinyReg1)))

}
}

Other than the fact that AXI4 nodes don’t take a device argument, and can only have a single AddressSet instead of
multiple, everything else is unchanged.

Diplomatic Widgets

RocketChip provides a library of diplomatic TileLink and AXI4 widgets. The most commonly used widgets are
documented here. The TileLink widgets are available from freechips.rocketchip.tilelink and the AXI4
widgets from freechips.rocketchip.amba.axi4.

TLBuffer

A widget for buffering TileLink transactions. It simply instantiates queues for each of the 2 (or 5 for TL-C) decou-
pled channels. To configure the queue for each channel, you pass the constructor a freechips.rocketchip.
diplomacy.BufferParams object. The arguments for this case class are:

• depth: Int - The number of entries in the queue

• flow: Boolean - If true, combinationally couple the valid signals so that an input can be consumed on the
same cycle it is enqueued.

• pipe: Boolean - If true, combinationally couple the ready signals so that single-entry queues can run at
full rate.

There is an implicit conversion from Int available. If you pass an integer instead of a BufferParams object, the queue
will be the depth given in the integer and flow and pipe will both be false.

You can also use one of the predefined BufferParams objects.

• BufferParams.default = BufferParams(2, false, false)

• BufferParams.none = BufferParams(0, false, false)

• BufferParams.flow = BufferParams(1, true, false)

• BufferParams.pipe = BufferParams(1, false, true)
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Arguments:

There are four constructors available with zero, one, two, or five arguments.

The zero-argument constructor uses BufferParams.default for all of the channels.

The single-argument constructor takes a BufferParams object to use for all channels.

The arguments for the two-argument constructor are:

• ace: BufferParams - Parameters to use for the A, C, and E channels.

• bd: BufferParams - Parameters to use for the B and D channels

The arguments for the five-argument constructor are

• a: BufferParams - Buffer parameters for the A channel

• b: BufferParams - Buffer parameters for the B channel

• c: BufferParams - Buffer parameters for the C channel

• d: BufferParams - Buffer parameters for the D channel

• e: BufferParams - Buffer parameters for the E channel

Example Usage:

// Default settings
manager0.node := TLBuffer() := client0.node

// Using implicit conversion to make buffer with 8 queue entries per channel
manager1.node := TLBuffer(8) := client1.node

// Use default on A channel but pipe on D channel
manager2.node := TLBuffer(BufferParams.default, BufferParams.pipe) := client2.node

// Only add queues for the A and D channel
manager3.node := TLBuffer(
BufferParams.default,
BufferParams.none,
BufferParams.none,
BufferParams.default,
BufferParams.none) := client3.node

AXI4Buffer

Similar to the TLBuffer, but for AXI4. It also takes BufferParams objects as arguments.

Arguments:

Like TLBuffer, AXI4Buffer has zero, one, two, and five-argument constructors.

The zero-argument constructor uses the default BufferParams for all channels.

The one-argument constructor uses the provided BufferParams for all channels.

The two-argument constructor has the following arguments.

• aw: BufferParams - Buffer parameters for the “ar”, “aw”, and “w” channels.

• br: BufferParams - Buffer parameters for the “b”, and “r” channels.

The five-argument constructor has the following arguments
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• aw: BufferParams - Buffer parameters for the “ar” channel

• w: BufferParams - Buffer parameters for the “w” channel

• b: BufferParams - Buffer parameters for the “b” channel

• ar: BufferParams - Buffer parameters for the “ar” channel

• r: BufferParams - Buffer parameters for the “r” channel

Example Usage:

// Default settings
slave0.node := AXI4Buffer() := master0.node

// Using implicit conversion to make buffer with 8 queue entries per channel
slave1.node := AXI4Buffer(8) := master1.node

// Use default on aw/w/ar channel but pipe on b/r channel
slave2.node := AXI4Buffer(BufferParams.default, BufferParams.pipe) := master2.node

// Single-entry queues for aw, b, and ar but two-entry queues for w and r
slave3.node := AXI4Buffer(1, 2, 1, 1, 2) := master3.node

AXI4UserYanker

This widget takes an AXI4 port that has a user field and turns it into one without a user field. The values of the user
field from input AR and AW requests is kept in internal queues associated with the ARID/AWID, which is then used
to associate the correct user field to the responses.

Arguments:

• capMaxFlight: Option[Int] - (optional) An option which can hold the number of requests that can
be inflight for each ID. If None (the default), the UserYanker will support the maximum number of inflight
requests.

Example Usage:

nouser.node := AXI4UserYanker(Some(1)) := hasuser.node

AXI4Deinterleaver

Multi-beat AXI4 read responses for different IDs can potentially be interleaved. This widget reorders read responses
from the slave so that all of the beats for a single transaction are consecutive.

Arguments:

• maxReadBytes: Int - The maximum number of bytes that can be read in a single transaction.

Example Usage:

interleaved.node := AXI4Deinterleaver() := consecutive.node

TLFragmenter

The TLFragmenter widget shrinks the maximum logical transfer size of the TileLink interface by breaking larger
transactions into multiple smaller transactions.
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Arguments:

• minSize: Int - Minimum size of transfers supported by all outward managers.

• maxSize: Int - Maximum size of transfers supported after the Fragmenter is applied.

• alwaysMin: Boolean - (optional) Fragment all requests down to minSize (else fragment to maximum
supported by manager). (default: false)

• earlyAck: EarlyAck.T - (optional) Should a multibeat Put be acknowledged on the first beat or last
beat? Possible values (default: EarlyAck.None):

– EarlyAck.AllPuts - always acknowledge on first beat.

– EarlyAck.PutFulls - acknowledge on first beat if PutFull, otherwise acknowledge on last beat.

– EarlyAck.None - always acknowledge on last beat.

• holdFirstDenied: Boolean - (optional) Allow the Fragmenter to unsafely combine multibeat Gets by
taking the first denied for the whole burst. (default: false)

Example Usage:

val beatBytes = 8
val blockBytes = 64

single.node := TLFragmenter(beatBytes, blockBytes) := multi.node

axi4lite.node := AXI4Fragmenter() := axi4full.node

Additional Notes

• TLFragmenter modifies: PutFull, PutPartial, LogicalData, Get, Hint

• TLFragmenter passes: ArithmeticData (truncated to minSize if alwaysMin)

• TLFragmenter cannot modify acquire (could livelock); thus it is unsafe to put caches on both sides

AXI4Fragmenter

The AXI4Fragmenter is similar to the TLFragmenter, except it can only break multi-beat AXI4 transactions into
single-beat transactions. This effectively serves as an AXI4 to AXI4-Lite converter. The constructor for this widget
does not take any arguments.

Example Usage:

axi4lite.node := AXI4Fragmenter() := axi4full.node

TLSourceShrinker

The number of source IDs that a manager sees is usually computed based on the clients that connect to it. In some
cases, you may wish to fix the number of source IDs. For instance, you might do this if you wish to export the TileLink
port to a Verilog black box. This will pose a problem, however, if the clients require a larger number of source IDs. In
this situation, you will want to use a TLSourceShrinker.

Arguments:

• maxInFlight: Int - The maximum number of source IDs that will be sent from the TLSourceShrinker
to the manager.
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Example Usage:

// client.node may have >16 source IDs
// manager.node will only see 16
manager.node := TLSourceShrinker(16) := client.node

AXI4IdIndexer

The AXI4 equivalent of TLSourceShrinker. This limits the number of AWID/ARID bits in the slave AXI4 interface.
Useful for connecting to external or black box AXI4 ports.

Arguments:

• idBits: Int - The number of ID bits on the slave interface.

Example Usage:

// master.node may have >16 unique IDs
// slave.node will only see 4 ID bits
slave.node := AXI4IdIndexer(4) := master.node

Notes:

The AXI4IdIndexer will create a user field on the slave interface, as it stores the ID of the master requests in this
field. If connecting to an AXI4 interface that doesn’t have a user field, you’ll need to use the AXI4UserYanker.

TLWidthWidget

This widget changes the physical width of the TileLink interface. The width of a TileLink interface is configured by
managers, but sometimes you want the client to see a particular width.

Arguments:

• innerBeatBytes: Int - The physical width (in bytes) seen by the client

Example Usage:

TLFIFOFixer

TileLink managers that declare a FIFO domain must ensure that all requests to that domain from clients which have
requested FIFO ordering see responses in order. However, they can only control the ordering of their own responses,
and do not have control over how those responses interleave with responses from other managers in the same FIFO
domain. Responsibility for ensuring FIFO order across managers goes to the TLFIFOFixer.

Arguments:

• policy: TLFIFOFixer.Policy - (optional) Which managers will the TLFIFOFixer enforce ordering
on? (default: TLFIFOFixer.all)

The possible values of policy are:

• TLFIFOFixer.all - All managers (including those without a FIFO domain) will have ordering guaranteed

• TLFIFOFixer.allFIFO - All managers that define a FIFO domain will have ordering guaranteed

• TLFIFOFixer.allVolatile - All managers that have a RegionType of VOLATILE, PUT_EFFECTS, or
GET_EFFECTS will have ordering guaranteed (see Manager Node for explanation of region types).
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TLXbar and AXI4Xbar

These are crossbar generators for TileLink and AXI4 which will route requests from TL client / AXI4 master nodes
to TL manager / AXI4 slave nodes based on the addresses defined in the managers / slaves. Normally, these are con-
structed without arguments. However, you can change the arbitration policy, which determines which client ports get
precedent in the arbiters. The default policy is TLArbiter.roundRobin, but you can change it to TLArbiter.
lowestIndexFirst if you want a fixed arbitration precedence.

Arguments:

All arguments are optional.

• arbitrationPolicy: TLArbiter.Policy - The arbitration policy to use.

• maxFlightPerId: Int - (AXI4 only) The number of transactions with the same ID that can be inflight
at a time. (default: 7)

• awQueueDepth: Int - (AXI4 only) The depth of the write address queue. (default: 2)

Example Usage:

// Instantiate the crossbar lazy module
val tlBus = LazyModule(new TLXbar)

// Connect a single input edge
tlBus.node := tlClient0.node
// Connect multiple input edges
tlBus.node :=* tlClient1.node

// Connect a single output edge
tlManager0.node := tlBus.node
// Connect multiple output edges
tlManager1.node :*= tlBus.node

// Instantiate a crossbar with lowestIndexFirst arbitration policy
// Yes, we still use the TLArbiter singleton even though this is AXI4
val axiBus = LazyModule(new AXI4Xbar(TLArbiter.lowestIndexFirst))

// The connections work the same as TL
axiBus.node := axiClient0.node
axiBus.node :=* axiClient1.node
axiManager0.node := axiBus.node
axiManager1.node :*= axiBus.node

TLToAXI4 and AXI4ToTL

These are converters between the TileLink and AXI4 protocols. TLToAXI4 takes a TileLink client and connects to
an AXI4 slave. AXI4ToTL takes an AXI4 master and connects to a TileLink manager. Generally you don’t want to
override the default arguments of the constructors for these widgets.

Example Usage:

axi4slave.node :=
AXI4UserYanker() :=
AXI4Deinterleaver(64) :=
TLToAXI4() :=
tlclient.node

(continues on next page)
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(continued from previous page)

tlmanager.node :=
AXI4ToTL() :=
AXI4UserYanker() :=
AXI4Fragmenter() :=
axi4master.node

You will need to add an AXI4Deinterleaver after the TLToAXI4 converter because it cannot deal with interleaved read
responses. The TLToAXI4 converter also uses the AXI4 user field to store some information, so you will need an
AXI4UserYanker if you want to connect to an AXI4 port without user fields.

Before you connect an AXI4 port to the AXI4ToTL widget, you will need to add an AXI4Fragmenter and
AXI4UserYanker because the converter cannot deal with multi-beat transactions or user fields.

TLROM

The TLROM widget provides a read-only memory that can be accessed using TileLink. Note: this widget is in the
freechips.rocketchip.devices.tilelink package, not the freechips.rocketchip.tilelink
package like the others.

Arguments:

• base: BigInt - The base address of the memory

• size: Int - The size of the memory in bytes

• contentsDelayed: => Seq[Byte] - A function which, when called generates the byte contents of the
ROM.

• executable: Boolean - (optional) Specify whether the CPU can fetch instructions from the ROM (de-
fault: true).

• beatBytes: Int - (optional) The width of the interface in bytes. (default: 4).

• resources: Seq[Resource] - (optional) Sequence of resources to add to the device tree.

Example Usage:

val rom = LazyModule(new TLROM(
base = 0x100A0000,
size = 64,
contentsDelayed = Seq.tabulate(64) { i => i.toByte },
beatBytes = 8))

rom.node := TLFragmenter(8, 64) := client.node

Supported Operations:

The TLROM only supports single-beat reads. If you want to perform multi-beat reads, you should attach a TLFrag-
menter in front of the ROM.

TLRAM and AXI4RAM

The TLRAM and AXI4RAM widgets provide read-write memories implemented as SRAMs.

Arguments:

• address: AddressSet - The address range that this RAM will cover.
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• cacheable: Boolean - (optional) Can the contents of this RAM be cached. (default: true)

• executable: Boolean - (optional) Can the contents of this RAM be fetched as instructions. (default:
true)

• beatBytes: Int - (optional) Width of the TL/AXI4 interface in bytes. (default: 4)

• atomics: Boolean - (optional, TileLink only) Does the RAM support atomic operations? (default:
false)

Example Usage:

val xbar = LazyModule(new TLXbar)

val tlram = LazyModule(new TLRAM(
address = AddressSet(0x1000, 0xfff)))

val axiram = LazyModule(new AXI4RAM(
address = AddressSet(0x2000, 0xfff)))

tlram.node := xbar.node
axiram := TLToAXI4() := xbar.node

Supported Operations:

TLRAM only supports single-beat TL-UL requests. If you set atomics to true, it will also support Logical and
Arithmetic operations. Use a TLFragmenter if you want multi-beat reads/writes.

AXI4RAM only supports AXI4-Lite operations, so multi-beat reads/writes and reads/writes smaller than full-width
are not supported. Use an AXI4Fragmenter if you want to use the full AXI4 protocol.
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